Lời giải của giáo viên
ToanVN.com
\(\dfrac{{{a^{\frac{2}{3}}}.{a^{\frac{3}{4}}}}}{{\sqrt[6]{a}}} = \dfrac{{{a^{\frac{{17}}{{12}}}}}}{{{a^{\frac{1}{6}}}}} = {a^{\frac{5}{4}}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng \(\sqrt 2 a\) và tam giác SAC đều. Thể tích của khối chóp đã cho bằng bao nhiêu?
Đạo hàm của hàm số \(y = {\left( {3{x^2} - 2x + 1} \right)^{\frac{1}{4}}}\) là:
Điểm cực tiểu của đồ thị hàm số \(y = {x^3} - 6{x^2} + 9x - 2\) là điểm nào sau đây?
Cho hàm số \(y = \dfrac{{x + m}}{{x - 2}}\) thỏa mãn \(\mathop {\min }\limits_{\left[ {3;5} \right]} y = 4\). Mệnh đề nào dưới đây đúng?
Tập xác định của hàm số \(y = {\left( {3x - 1} \right)^{ - 4}}\) là
Cho hàm số y = f(x) có đồ thị như hình vẽ
.png)
Điểm cực đại của đồ thị hàm số đã cho là điểm nào dưới đây?
Cho khối hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a và \(AC' = a\sqrt {14} \) . Tính thể tích của khối hộp chữ nhật đã cho.
Với a là số thực dương tùy ý, \({\log _5}{a^6}\) bằng giá trị nào sau đây?
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a và \(AA' = \sqrt 6 a\). Tính thể tích của khối lăng trụ đã cho.
Cho hàm số y = f(x) có bảng biến thiên là:
.png)
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Tìm tập xác định của hàm số \(y = \ln \left( {2x - 1} \right)\).
Cho hàm số y =f(x) liên tục trên đoạn [-3;1] và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [-3;1]. Giá trị của M - m bằng bao nhiêu?
.png)
.png)