Lời giải của giáo viên
ToanVN.com
Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài hai cạnh còn lại
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(A = \left( {\frac{{ - 3}}{5}{x^2}{y^2}} \right).\frac{2}{3}{x^2}y\). Đơn thức A sau khi thu gọn là:
Cho \(B = \left( { - 2\frac{1}{3}{x^2}{y^2}} \right).\frac{9}{{16}}x{y^2}.{\left( { - 2{x^2}y} \right)^3}\). Đơn thức B sau khi thu gọn là:
Tam giác \(ABC\) có các số đo như trong hình 2, ta có:
Cho tam giác \(ABC\) các đường phân giác \(AM\) của góc \(A\) và \(B{\rm N}\) của góc \(B\) cắt nhau tại \(I\) Khi đó, điểm \(I\):
Giá trị của đa thức \(Q\left( x \right) = {x^2} - 3y + 2z\) tại \(x = - 3;y = 0;z = 1\) là:
Bộ ba số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông?
Cho \(a,b,c \ne 0\) thỏa mãn \(a + b + c = 0\) Tính: \(A = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right)\)
Bậc của đa thức \(M = {x^6} + 5{x^2}{y^2} + {y^4} - {x^4}{y^3} - 1\) là:
Trong tam giác \(M{\rm N}P\) có điểm \(O\) cách đều 3 đỉnh tam giác. Khi đó O là giao điểm của:
Thu gọn đơn thức \(4{x^3}y\left( { - 2{x^2}{y^3}} \right).\left( { - x{y^5}} \right)\) ta được:
Giá trị của đa thức \(P = 2{x^3} - 3{y^2} - 2xy\) khi \(x = - 2;y = - 3\) là:
Tìm x sao cho \(f\left( x \right) - g\left( x \right) + h\left( x \right) = 0\)
Cho hai đa thức : \(P\left( x \right) = 2{x^2} - 1\) và \(Q\left( x \right) = x + 1\). Hiệu \(P\left( x \right) - Q\left( x \right)\) bằng:
Xác định đa thức bậc nhất \(P\left( x \right) = ax + b\) biết rằng \(P\left( { - 1} \right) = 5\) và \(P\left( { - 2} \right) = 7.\)