Cho tam giác \(ABC\) các đường phân giác \(AM\) của góc \(A\) và \(B{\rm N}\) của góc \(B\) cắt nhau tại \(I\) Khi đó, điểm \(I\):
A. Là trực tâm của tam giác
B. Cách hai đỉnh A và B một khoảng lần lượt bằng \(\frac{2}{3}AM\) và \(\frac{2}{3}B{\rm N}\)
C. Cách đều ba cạnh của tam giác
D. Cách đều ba đỉnh của tam giác
Lời giải của giáo viên
ToanVN.com
Cho tam giác \(ABC\) các đường phân giác \(AM\) của góc \(A\) và \(B{\rm N}\) của góc \(B\) cắt nhau tại \(I\)
Khi đó, điểm \(I\)cách đều ba cạnh của tam giác.
Chọn C
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(A = \left( {\frac{{ - 3}}{5}{x^2}{y^2}} \right).\frac{2}{3}{x^2}y\). Đơn thức A sau khi thu gọn là:
Cho \(B = \left( { - 2\frac{1}{3}{x^2}{y^2}} \right).\frac{9}{{16}}x{y^2}.{\left( { - 2{x^2}y} \right)^3}\). Đơn thức B sau khi thu gọn là:
Tam giác \(ABC\) có các số đo như trong hình 2, ta có:
Giá trị của đa thức \(Q\left( x \right) = {x^2} - 3y + 2z\) tại \(x = - 3;y = 0;z = 1\) là:
Bậc của đa thức \(M = {x^6} + 5{x^2}{y^2} + {y^4} - {x^4}{y^3} - 1\) là:
Cho \(a,b,c \ne 0\) thỏa mãn \(a + b + c = 0\) Tính: \(A = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right)\)
Bộ ba số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông?
Trong tam giác \(M{\rm N}P\) có điểm \(O\) cách đều 3 đỉnh tam giác. Khi đó O là giao điểm của:
Thu gọn đơn thức \(4{x^3}y\left( { - 2{x^2}{y^3}} \right).\left( { - x{y^5}} \right)\) ta được:
Giá trị của đa thức \(P = 2{x^3} - 3{y^2} - 2xy\) khi \(x = - 2;y = - 3\) là:
Tìm x sao cho \(f\left( x \right) - g\left( x \right) + h\left( x \right) = 0\)
Số nào sau đây là nghiệm của đa thức \(g\left( y \right) = \frac{2}{3}y + 1\)
Cho hai đa thức : \(P\left( x \right) = 2{x^2} - 1\) và \(Q\left( x \right) = x + 1\). Hiệu \(P\left( x \right) - Q\left( x \right)\) bằng:
Xác định đa thức bậc nhất \(P\left( x \right) = ax + b\) biết rằng \(P\left( { - 1} \right) = 5\) và \(P\left( { - 2} \right) = 7.\)