Đề thi HK2 môn Toán 11 năm 2021-2022 - Trường THPT Nguyễn Huệ

Đề thi HK2 môn Toán 11 năm 2021-2022 - Trường THPT Nguyễn Huệ

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 41 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 263002

Cho hàm \(f\left( x \right)\) liên tục trên khoảng \(\left( {a;b} \right)\), \({x_0} \in \left( {a;b} \right)\). Hãy tính\(f'\left( {{x_0}} \right)\) bằng định nghĩa ta cần tính:

Xem đáp án

Tính\(f'\left( {{x_0}} \right)\) bằng định nghĩa ta cần tính  \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}\).

Chọn B.

Câu 2: Trắc nghiệm ID: 263003

Chọn khẳng định sai trong các khẳng định sau:

Xem đáp án

Hàm số \(y = \frac{{3x - 5}}{{x + 3}}\) có TXĐ \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\)

\( \Rightarrow \) Hàm số không liên tục trên \(\mathbb{R}\).

Vậy khẳng định B sai.

Chọn B.

Câu 3: Trắc nghiệm ID: 263004

Cho hình lập phương \(ABCD.EFGH\)(tham khảo hình vẽ bên) có cạnh bằng 5 cm. Tính khoảng cách giữa 2 đường thẳng chéo nhau AD và HF ta được

Xem đáp án

Ta có \(HD \bot \left( {ABCD} \right) \Rightarrow HD \bot AB\)

\(HD \bot \left( {EFGH} \right) \Rightarrow HD \bot HF\)

\( \Rightarrow HD\) là đoạn vuông góc chung của \(AD\) và \(HF\)\( \Rightarrow d\left( {AD;HF} \right) = HD = 5\).

Chọn B.

Câu 4: Trắc nghiệm ID: 263005

Tính đạo hàm của hàm số sau \(y = 2\sin x + 2020.\)

Xem đáp án

Ta có : \(y' = 2\cos x\).

Chọn C.

Câu 5: Trắc nghiệm ID: 263006

Trong các giới hạn dãy số dưới đây, giới hạn có kết quả đúng là:

Xem đáp án

Ta có: \(\lim \,( - 3{n^4} + 3)\)\( = \lim {n^4}\left( { - 3 + \frac{3}{{{n^4}}}} \right) =  - \infty \)

Đáp án A đúng.

Chọn A.

Câu 6: Trắc nghiệm ID: 263007

Cho hàm số \(y = {x^3} - 3x + 1.\) Hãy tìm \(dy.\) 

Xem đáp án

\(dy = \left( {{x^3} - 3x + 1} \right)'dx\)\( = \left( {3{x^2} - 3} \right)dx\).

Chọn C.

Câu 7: Trắc nghiệm ID: 263008

Hãy tính \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} + 3x - 1}}{{x + 1}}\). Kết quả đúng là:  

Xem đáp án

Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} + 3x - 1}}{{x + 1}}\)\( = \frac{{{{2.1}^2} + 3.1 - 1}}{{1 + 1}} = \frac{4}{2} = 2\).

Chọn D.

Câu 8: Trắc nghiệm ID: 263009

Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc (xem hình vẽ). Chọn khẳng định sai khi nói về hai mặt phẳng vuông góc.

Xem đáp án

Ta có \(\left\{ \begin{array}{l}OC \bot OA\\OC \bot OB\end{array} \right. \Rightarrow OC \bot \left( {OAB} \right)\).

Mà \(\left\{ \begin{array}{l}OC \subset \left( {OAC} \right)\\OC \subset \left( {OBC} \right)\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}\left( {OAB} \right) \bot \left( {OAC} \right)\\\left( {OAB} \right) \bot \left( {OBC} \right)\end{array} \right.\)

 

\( \Rightarrow B,D\) đúng.

Ta có \(\left\{ \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right. \Rightarrow OA \bot \left( {OBC} \right)\).

Mà \(OA \subset \left( {OAC} \right)\)\( \Rightarrow \left( {OAC} \right) \bot \left( {OBC} \right)\) \( \Rightarrow C\) đúng.

Chọn A.

Câu 9: Trắc nghiệm ID: 263010

Container của xe tải dùng để chở hàng hóa thường có dạng hình hộp chữ nhật. Chúng ta mô hình hóa thùng container bằng hình hộp chữ nhật \(MNPQ.EFGH\) (tham khảo hình vẽ bên dưới). Chọn khẳng định sai khi nói về hai đường thẳng vuông góc trong các khẳng định sau.

Xem đáp án

Ta có \(HE \bot \left( {MNEF} \right) \Rightarrow \left\{ \begin{array}{l}HE \bot NF\\HE \bot MN\end{array} \right.\)

\(HE \bot \left( {GHPQ} \right) \Rightarrow HE \bot GP\).

Vậy chỉ có khẳng định D sai.

Chọn D.

Câu 10: Trắc nghiệm ID: 263011

Xem đáp án

Ta có \(f'\left( x \right) = 3{x^2} - 6x\)\( \Rightarrow f''\left( x \right) = 6x - 6\)  

Chọn A.

Câu 11: Trắc nghiệm ID: 263012

Tính đạo hàm của hàm số \(f(x) = 3{x^3}\).

Xem đáp án

\(f'\left( x \right) = 3.3{x^2} = 9{x^2}\).

Chọn D.

Câu 12: Trắc nghiệm ID: 263013

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(\Delta A'B'C'\) vuông tại \(B'\)  (xem hình vẽ). Hỏi đường thẳng \(B'C'\) vuông góc với mặt phẳng nào được liệt kê ở bốn phương án dưới đây ? 

Xem đáp án

Ta có \(\left\{ \begin{array}{l}B'C' \bot BB'\\B'C' \bot A'B'\end{array} \right.\)\( \Rightarrow B'C' \bot \left( {BB'A'} \right)\)

\( \Rightarrow A\) đúng.

Chọn A.

Câu 13: Trắc nghiệm ID: 263014

Cho hình hộp \(ABCD.EFGH\) (tham khảo hình vẽ). Tính tổng ba véctơ \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AE} \) ta được 

Xem đáp án

\(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AE} \)\( = \overrightarrow {AC}  + \overrightarrow {AE}  = \overrightarrow {AG} \).

Chọn A.

Câu 14: Trắc nghiệm ID: 263015

Đạo hàm của hàm số sau \(y = \cot x\) là hàm số:

Xem đáp án

\(\left( {\cot x} \right)' =  - \frac{1}{{{{\sin }^2}x}}\)

Chọn B.

Câu 15: Trắc nghiệm ID: 263016

Vi phân của hàm số sau \(y\,\, = \,\cos 2x + \cot x\) là: 

Xem đáp án

\(dy = \left( {\cos 2x + \cot x} \right)'dx\)\( = \left( { - 2\sin 2x - \frac{1}{{{{\sin }^2}x}}} \right)dx\) .

Chọn D.

Câu 16: Trắc nghiệm ID: 263017

Hãy chọn kết quả đúng trong các giới hạn dưới đây: 

Xem đáp án

\(\lim \frac{{ - 2{n^2} - 1}}{{5{n^2} - 8}}\)\( = \lim \frac{{ - 2 - \frac{1}{{{n^2}}}}}{{5 - \frac{8}{{{n^2}}}}} =  - \frac{2}{5}\)

\( \Rightarrow \) Đáp án C đúng.

Chọn C.

Câu 17: Trắc nghiệm ID: 263018

Hãy tính \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + x - 12}}{{x - 3}}\). Kết quả đúng là: 

Xem đáp án

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + x - 12}}{{x - 3}}\\ = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {x + 4} \right)}}{{x - 3}}\\ = \mathop {\lim }\limits_{x \to 3} \left( {x + 4} \right) = 7\end{array}\).

Chọn C.

Câu 18: Trắc nghiệm ID: 263019

Cho đường thẳng d vuông góc với mặt phẳng \((\alpha )\) và đường thẳng \(\Delta \) khác d. Hãy chọn khẳng định sai trong các khẳng định sau.

Xem đáp án

Khẳng định sai là B.

Chọn B.

Câu 19: Trắc nghiệm ID: 263020

Chọn khẳng định sai trong các khẳng định sau ?

Xem đáp án

Hai mặt phẳng cắt nhau thì không vuông góc là khẳng định sai.

Chọn B.

Câu 20: Trắc nghiệm ID: 263021

Cho hàm số sau \(f\left( x \right) = {\left( {2x + 1} \right)^{12}}\). Tính \(f''\left( 0 \right)\). 

Xem đáp án

Ta có

\(\begin{array}{l}f'\left( x \right) = 12{\left( {2x + 1} \right)^{11}}\left( {2x + 1} \right)'\\ = 24{\left( {2x + 1} \right)^{11}}\\f''\left( x \right) = 24.11{\left( {2x + 1} \right)^{10}}.\left( {2x + 1} \right)'\\ = 528{\left( {2x + 1} \right)^{10}}\\ \Rightarrow f''\left( 0 \right) = {528.1^{10}} = 528\end{array}\)

Chọn B.

Câu 21: Trắc nghiệm ID: 263022

Hệ số góc của tiếp tuyến của đồ thị hàm số sau  \(y = \frac{{x - 1}}{{x + 1}}\) tại điểm có hoành độ \({x_0} = 0\) là: 

Xem đáp án

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\} \Rightarrow {x_0} = 0 \in D\).

Ta có: \(y' = \frac{{1 + 1}}{{{{\left( {x + 1} \right)}^2}}} = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\).

\( \Rightarrow \) Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) tại điểm có hoành độ \({x_0} = 0\) là: \(k = \frac{2}{{{{\left( {0 + 1} \right)}^2}}} = 2\).

Chọn D.

Câu 22: Trắc nghiệm ID: 263023

Tìm số gia \(\Delta y\) của hàm số sau \(y = {x^2}\) biết \({x_0} = 3\) và \(\Delta x =  - 1.\) 

Xem đáp án

Đặt \(y = {x^2} = f\left( x \right)\) ta có:

\(\begin{array}{l}\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\\ = f\left( {3 - 1} \right) - f\left( 3 \right)\\ = f\left( 2 \right) - f\left( 3 \right) = {2^2} - {3^2}\\ =  - 5\end{array}\)

Chọn C.

Câu 23: Trắc nghiệm ID: 263024

Hãy tính \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} + 4}  + x} \right)\). Kết quả đúng là:

Xem đáp án

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} + 4}  + x} \right)\\ = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\left( {\sqrt {{x^2} + 4}  + x} \right)\left( {\sqrt {{x^2} + 4}  - x} \right)}}{{\sqrt {{x^2} + 4}  - x}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} + 4 - {x^2}}}{{\sqrt {{x^2} + 4}  - x}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \frac{4}{{\sqrt {{x^2} + 4}  - x}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\frac{4}{x}}}{{ - \sqrt {1 + \frac{4}{{{x^2}}}}  - 1}}\\ = \frac{0}{{ - 2}} = 0\end{array}\)

Chọn A.

Câu 24: Trắc nghiệm ID: 263025

Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng 6 cm. Hãy tính khoảng cách từ điểm B đến mặt phẳng \((SCD)\)

Xem đáp án

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).

Gọi \(M\) là trung điểm của \(CD\) ta có \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right)\).

Trong \(\left( {SOM} \right)\) kẻ \(OH \bot SM\) ta có

\(\left\{ \begin{array}{l}OH \bot SM\\OH \bot CD\end{array} \right. \Rightarrow OH \bot \left( {SCD} \right)\)\( \Rightarrow d\left( {O;\left( {SCD} \right)} \right) = OH\).

Ta có \(BO \cap \left( {SCD} \right) = D\)\( \Rightarrow \frac{{d\left( {B;\left( {SCD} \right)} \right)}}{{d\left( {O;\left( {SCD} \right)} \right)}} = \frac{{BD}}{{OD}} = 2\).

\( \Rightarrow d\left( {B;\left( {SCD} \right)} \right)\)\( = 2d\left( {O;\left( {SCD} \right)} \right) = 2OH\).

Ta có \(OM\) là đường trung bình của \(\Delta ACD\)

\( \Rightarrow OM = \frac{1}{2}AD = 3\,\,\left( {cm} \right)\).

Trong \(\Delta SOC\) có: \(SO = \sqrt {S{C^2} - O{C^2}} \)\( = \sqrt {{6^2} - {{\left( {\frac{{6\sqrt 2 }}{2}} \right)}^2}}  = 3\sqrt 2 \) (cm).

Áp dụng hệ thức lượng trong tam giác vuông \(SOM\) ta có: \(OH = \frac{{SO.OM}}{{\sqrt {S{O^2} + O{M^2}} }}\)\( = \frac{{3\sqrt 2 .3}}{{\sqrt {18 + 9} }} = \sqrt 6 \).

Vậy \(d\left( {B;\left( {SCD} \right)} \right) = 2\sqrt 6 \,\,\left( {cm} \right)\).

Chọn C.

Câu 25: Trắc nghiệm ID: 263026

Cho hàm số sau \(y = \frac{{{x^2} + 3}}{{x + 1}}\). Nếu\(y' > 0\) thì x thuộc tập hợp nào sau đây: 

Xem đáp án

Ta có

\(\begin{array}{l}y' = \frac{{2x\left( {x + 1} \right) - \left( {{x^2} + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ = \frac{{2{x^2} + 2x - {x^2} - 3}}{{{{\left( {x + 1} \right)}^2}}}\\ = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\end{array}\)

\(\begin{array}{l}y' > 0 \Leftrightarrow \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}} > 0\\ \Leftrightarrow {x^2} + 2x - 3 > 0\\ \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( {1; + \infty } \right)\end{array}\).

Chọn A.

Câu 26: Trắc nghiệm ID: 263027

Chọn kết quả sai trong các giới hạn dưới đây:

Xem đáp án

\(\begin{array}{l} + )\,\,\lim \frac{{{{5.4}^n} + {{7.2}^n} - {3^n}}}{{{{4.4}^n} - {{2.3}^n}}}\\ = \lim \frac{{5 + 7.{{\left( {\frac{2}{4}} \right)}^n} - {{\left( {\frac{3}{4}} \right)}^n}}}{{4 - 2{{\left( {\frac{3}{4}} \right)}^n}}} = \frac{5}{4}\\ + )\,\,\lim \frac{{\sqrt {9{n^2} + 4}  - n}}{{{n^2}}}\\ = \lim \frac{{\sqrt {\frac{9}{{{n^2}}} + \frac{4}{{{n^4}}}}  - \frac{1}{n}}}{1} = 0\\ + )\,\,\lim \frac{{{3^n} + {{4.5}^n} - {8^n}}}{{{{3.8}^n} + {{2.6}^n}}}\\ = \lim \frac{{{{\left( {\frac{3}{8}} \right)}^n} + 4{{\left( {\frac{5}{8}} \right)}^n} - 1}}{{3 + 2{{\left( {\frac{6}{8}} \right)}^n}}}\\ =  - \frac{1}{3}\\ + )\,\,\lim \frac{{\sqrt {{n^2} + 4}  + n}}{n}\\ = \lim \frac{{\sqrt {1 + \frac{4}{{{n^2}}}}  + 1}}{1} = 1\end{array}\)

Chọn D.

Câu 27: Trắc nghiệm ID: 263028

Cho hàm số sau \(y = \cos \sqrt {2{x^2} - x + 7} \). Khi đó \(y'\) bằng  

Xem đáp án

\(\begin{array}{l}y' =  - \left( {\sqrt {2{x^2} - x + 7} } \right)'sin\sqrt {2{x^2} - x + 7} \\y' =  - \frac{{\left( {2{x^2} - x + 7} \right)'}}{{2\sqrt {2{x^2} - x + 7} }}sin\sqrt {2{x^2} - x + 7} \\y' = \frac{{ - 4x + 1}}{{2\sqrt {2{x^2} - x + 7} }}sin\sqrt {2{x^2} - x + 7} \\y' = \frac{{\left( {1 - 4x} \right)sin\sqrt {2{x^2} - x + 7} }}{{2\sqrt {2{x^2} - x + 7} }}\end{array}\)

Chọn C.

Câu 28: Trắc nghiệm ID: 263029

Cho hình chóp tam giác \(S.ABC\) có mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với mặt đáy. Biết góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}\) cạnh \(AB = 4cm;\,\,BC = 6cm;\,\,CA = 8cm\). Hãy tính độ dài cạnh SA của hình chóp. 

Xem đáp án

Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAC} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {SAC} \right) = SA\end{array} \right. \)\(\Rightarrow SA \bot \left( {ABC} \right)\).

Xét tam giác \(ABC\) ta có

\(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}}\)\( = \frac{{{4^2} + {6^2} - {8^2}}}{{2.4.6}} =  - \frac{1}{4} < 0\)

\( \Rightarrow \widehat B > {90^0}\)

Trong \(\left( {ABC} \right)\) dựng \(AH \bot BC\,\,\left( {H \in BC} \right)\) ta có:

\(\left\{ \begin{array}{l}BC \bot AH\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAH} \right)\)\( \Rightarrow BC \bot SH\).

\(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SH \bot \left( {ABC} \right)\\\left( {ABC} \right) \supset AH \bot \left( {ABC} \right)\end{array} \right.\)

\( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right)\) \( = \angle \left( {SH;AH} \right) = \angle SHA = {60^0}\) .

Xét tam giác vuông \(AHB\) có \(BH = AB.\cos \angle ABH\)\( = 4.\frac{1}{4} = 1\).

\( \Rightarrow AH = \sqrt {A{B^2} - B{H^2}} \)\( = \sqrt {{4^2} - {1^2}}  = \sqrt {15} \).

Xét tam giác vuông \(SAH\) có : \(SA = AH.\tan {60^0}\)\( = \sqrt {15} .\sqrt 3  = 3\sqrt 5 \).

Chọn D.

Câu 29: Trắc nghiệm ID: 263030

Gọi (C) là đồ thị của hàm số sau \(y = {(x - 1)^3}\). Tiếp tuyến của (C) song song với đường thẳng \(\Delta :12x - y - 2018 = 0\) có phương trình là:  

Xem đáp án

Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = {\left( {x - 1} \right)^3}\) tại điểm có hoành độ \(x = {x_0}\) là \(k = 3{\left( {{x_0} - 1} \right)^2}\).

Tiếp tuyến song song với đường thẳng \(\Delta :\,\,12x - y - 2018 = 0\)\( \Leftrightarrow y = 12x - 2018\) \( \Rightarrow k = 12\).

\(\begin{array}{l} \Rightarrow 3{\left( {{x_0} - 1} \right)^2} = 12\\ \Leftrightarrow {\left( {{x_0} - 1} \right)^2} = 4\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} - 1 = 2\\{x_0} - 1 =  - 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} =  - 1\end{array} \right.\end{array}\).

Với \({x_0} = 3\), phương trình tiếp tuyến cần tìm là : \(y = 12\left( {x - 3} \right) + 8\)\( = 12x - 28\,\,\,\left( {tm} \right)\) .

Với \({x_0} =  - 1\), phương trình tiếp tuyến cần tìm là : \(y = 12\left( {x + 1} \right) - 8\)\( = 12x + 4\,\,\,\left( {tm} \right)\) .

Chọn D.

Câu 30: Trắc nghiệm ID: 263031

Cho hàm số sau \(f(x) = \left\{ \begin{array}{l}2b{x^2} - 4\,\,\,khi\,\,\,x \le 3\\\,\,\,\,\,5\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,\,x > 3\end{array} \right.\). Hàm số liên tục trên \(\mathbb{R}\) khi giá trị của b là: 

Xem đáp án

Hàm số liên tục trên các khoảng \(\left( { - \infty ;3} \right)\) và \(\left( {3; + \infty } \right)\). Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số phải liên tục tại \(x = 3\).

Ta có

\(\begin{array}{l} + )\,\,\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} 5 = 5\\ + )\,\,\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left( {2b{x^2} - 4} \right)\\ = 18b - 4\\ + )\,\,f\left( 3 \right) = 18b - 4\end{array}\)

Hàm số liên tục tại \(x = 3\)\( \Leftrightarrow 18b - 4 = 5 \Leftrightarrow b = \frac{1}{2}\).

Vậy hàm số đã cho liên tục trên \(\mathbb{R}\)\( \Leftrightarrow b = \frac{1}{2}\).

Chọn D.

Câu 31: Trắc nghiệm ID: 263032

Kết quả của giới hạn sau \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2x + 1}}{{x - 1}}\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \left( { - 2x + 1} \right) =  - 2.1 + 1 =  - 1 < 0\\\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 1 - 1 = 0\\x > 1 \Rightarrow x - 1 > 0\end{array}\)

Vậy \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2x + 1}}{{x - 1}} =  - \infty \).

Chọn B.

Câu 32: Trắc nghiệm ID: 263033

Hàm số sau \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:

Xem đáp án

Ta có:  \( - 1 \le \sin x \le 1\)\( \Leftrightarrow  - 2 \le 2\sin x \le 2\) \( \Leftrightarrow 1 \le 2\sin x + 3 \le 5\).

Do đó \(2\sin x + 3 > 0\,\,\forall x \in \mathbb{R}\).

\( \Rightarrow \) Hàm số xác định trên \(\mathbb{R}\).

Vậy hàm phân thức trên liên tục trên \(\mathbb{R}\).

Chọn D.

Câu 33: Trắc nghiệm ID: 263034

Cho biết các mặt bên của một khối chóp ngũ giác đều là hình gì?

Xem đáp án

Các mặt bên của một khối chóp ngũ giác đều là tam giác cân.

Chọn D.

Câu 34: Trắc nghiệm ID: 263035

Kết quả của giới hạn sau \(\lim \frac{{ - 3{n^2} + 5n + 1}}{{2{n^2} - n + 3}}\) là:

Xem đáp án

\(\begin{array}{l}\,\,\,\,\lim \frac{{ - 3{n^2} + 5n + 1}}{{2{n^2} - n + 3}}\\ = \lim \frac{{ - 3 + \frac{5}{n} + \frac{1}{{{n^2}}}}}{{2 - \frac{1}{n} + \frac{3}{{{n^2}}}}}\\ =  - \frac{3}{2}\end{array}\)

Chọn C.

Câu 35: Trắc nghiệm ID: 263036

Hãy tìm giá trị thực của tham số m để hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - x - 2}}{{x - 2}}\,\,khi\,x \ne 2}\\{m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 2}\end{array}} \right.\) liên tục tại \(x = 2\).

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right) = 3\end{array}\)

Lại có \(f\left( 2 \right) = m\).

Do đó để hàm số liên tục tại \(x = 2\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)\( \Leftrightarrow m = 3\).

Chọn A.

Câu 36: Trắc nghiệm ID: 263037

Đạo hàm của hàm số sau \(y = {\left( {{x^3} - 2{x^2}} \right)^{2019}}\) là:  

Xem đáp án

Ta có:

\(\begin{array}{l}y = {\left( {{x^3} - 2{x^2}} \right)^{2019}}\\ \Rightarrow y' = 2019.{\left( {{x^3} - 2{x^2}} \right)^{2018}}.\left( {{x^3} - 2{x^2}} \right)'\\y' = 2019.{\left( {{x^3} - 2{x^2}} \right)^{2018}}.\left( {3{x^2} - 4x} \right)\end{array}\)

Lại có \(f\left( 2 \right) = m\).

Do đó để hàm số liên tục tại \(x = 2\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)\( \Leftrightarrow m = 3\).

Chọn C.

Câu 37: Trắc nghiệm ID: 263038

Cho hình chóp S.ABC có SA^(ABC). Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Mệnh đề nào sai trong các mệnh đề sau đây? 

Xem đáp án

Gọi \(M\) là giao điểm của \(AK\) và \(BC\), ta có \(AM \bot BC\).

\(\left\{ \begin{array}{l}BC \bot AM\\BC \bot SA\,\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\)\( \Rightarrow BC \bot \left( {SAM} \right)\)

\( \Rightarrow BC \bot SM \Rightarrow SM\) là đường cao của \(\Delta SBC\), do đó \(K \in SM\).

Suy ra SH, AK và BC đồng quy tại M nên đáp án D đúng.

Mà \(BC \bot \left( {SAM} \right)\,\,\left( {cmt} \right),\)\(\left( {SAM} \right) \equiv \left( {SAH} \right)\)  nên \(BC \bot \left( {SAH} \right)\), suy ra đáp án A đúng.

Trong \(\left( {ABC} \right)\) kéo dài BK cắt AC tại P, trong (SBC) kéo dài BH cắt SC tại N.

Ta có: \(\left\{ \begin{array}{l}BP \bot AC\\BP \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\)\( \Rightarrow BP \bot \left( {SAC} \right)\)  \( \Rightarrow BP \bot SC\).

Suy ra \(\left\{ \begin{array}{l}SC \bot BP\\SC \bot BN\end{array} \right.\)\( \Rightarrow SC \bot \left( {BPN} \right)\), mà \(HK \subset \left( {BPN} \right) \Rightarrow HK \bot SC\).

Mặt khác \(HK \subset \left( {SAM} \right) \Rightarrow HK \bot BC\).

Nên \(HK \bot \left( {SBC} \right)\), do đó đáp án B đúng.

Chọn C.

Câu 38: Trắc nghiệm ID: 263039

Giá trị của giới hạn sau \(\lim \frac{{\sqrt {9{n^2} - n}  - \sqrt {n + 2} }}{{3n - 2}}\) là: 

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\lim \frac{{\sqrt {9{n^2} - n}  - \sqrt {n + 2} }}{{3n - 2}}\\ = \lim \frac{{\sqrt {9 - \frac{1}{n}}  - \sqrt {\frac{1}{n} + \frac{2}{{{n^2}}}} }}{{3 - \frac{2}{n}}}\\ = \frac{{\sqrt 9  - \sqrt 0 }}{3} = \frac{3}{3} = 1.\end{array}\)

Chọn A.

Câu 39: Trắc nghiệm ID: 263040

Gọi (d) là tiếp tuyến của đồ thị hàm số sau \(y = f(x) =  - {x^3} + x\) tại điểm \(M( - 2;6).\) Hệ số góc của (d) là

Xem đáp án

Ta có: \(y = f\left( x \right) =  - {x^3} + x\) \( \Rightarrow f'\left( x \right) =  - 3{x^2} + 1\).

Vậy hệ số góc của (d) là tiếp tuyến của đồ thị hàm số \(y = f(x) =  - {x^3} + x\) tại điểm \(M( - 2;6)\) là \(k = f'\left( { - 2} \right) =  - 3.{\left( { - 2} \right)^2} + 1 =  - 11.\)

Chọn A.

Câu 40: Trắc nghiệm ID: 263041

Biết rằng \(\lim \left( {\frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}} + \frac{{2{n^2} + 3}}{{{n^2} - 1}}} \right) = \frac{{a\sqrt 5 }}{b} + c\) với \(a,b,c \in \mathbb{Z}\). Tính giá trị của biểu thức  \(S = {a^2} + {b^2} + {c^2}\).

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\lim \left( {\frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}} + \frac{{2{n^2} + 3}}{{{n^2} - 1}}} \right)\\ = \lim \frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}}\\ + \lim \frac{{2{n^2} + 3}}{{{n^2} - 1}}\\ = \lim \frac{{1 - {{\left( {\frac{2}{{\sqrt 5 }}} \right)}^n}.2 + {{\left( {\frac{1}{{\sqrt 5 }}} \right)}^n}}}{{5.{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^n} + \sqrt 5  - {{\left( {\frac{3}{{\sqrt 5 }}} \right)}^n}}}\\ + \lim \frac{{2 + \frac{3}{{{n^2}}}}}{{1 - \frac{1}{{{n^2}}}}}\\ = \frac{{1 - 2.0 + 0}}{{5.0 + \sqrt 5  - 0}} + \frac{2}{1}\\ = \frac{{\sqrt 5 }}{5} + 2\end{array}\)

\( \Rightarrow a = 1,\,\,b = 5,\,\,c = 2\).

Vậy \(S = {a^2} + {b^2} + {c^2} = {1^2} + {5^2} + {2^2} = 30.\) 

Chọn B.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »