Chọn khẳng định sai trong các khẳng định sau ?
A. Hai mặt phẳng vuông góc thì chúng cắt nhau.
B. Hai mặt phẳng cắt nhau thì không vuông góc.
C. Hai mặt phẳng vuông góc thì góc của chúng bằng \(90^\circ \).
D. Hai mặt phẳng có góc bằng \(90^\circ \) thì chúng vuông góc.
Lời giải của giáo viên
ToanVN.com
Hai mặt phẳng cắt nhau thì không vuông góc là khẳng định sai.
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số sau \(f\left( x \right) = {\left( {2x + 1} \right)^{12}}\). Tính \(f''\left( 0 \right)\).
Tìm số gia \(\Delta y\) của hàm số sau \(y = {x^2}\) biết \({x_0} = 3\) và \(\Delta x = - 1.\)
Cho hàm \(f\left( x \right)\) liên tục trên khoảng \(\left( {a;b} \right)\), \({x_0} \in \left( {a;b} \right)\). Hãy tính\(f'\left( {{x_0}} \right)\) bằng định nghĩa ta cần tính:
Vi phân của hàm số sau \(y\,\, = \,\cos 2x + \cot x\) là:
Biết rằng \(\lim \left( {\frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}} + \frac{{2{n^2} + 3}}{{{n^2} - 1}}} \right) = \frac{{a\sqrt 5 }}{b} + c\) với \(a,b,c \in \mathbb{Z}\). Tính giá trị của biểu thức \(S = {a^2} + {b^2} + {c^2}\).
Trong các giới hạn dãy số dưới đây, giới hạn có kết quả đúng là:
Cho hàm số sau \(y = \cos \sqrt {2{x^2} - x + 7} \). Khi đó \(y'\) bằng
Hãy tính \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + x - 12}}{{x - 3}}\). Kết quả đúng là:
Hệ số góc của tiếp tuyến của đồ thị hàm số sau \(y = \frac{{x - 1}}{{x + 1}}\) tại điểm có hoành độ \({x_0} = 0\) là:
Giá trị của giới hạn sau \(\lim \frac{{\sqrt {9{n^2} - n} - \sqrt {n + 2} }}{{3n - 2}}\) là:
Cho biết các mặt bên của một khối chóp ngũ giác đều là hình gì?
