Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Du
Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Du
-
Hocon247
-
40 câu hỏi
-
60 phút
-
81 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Cho hình lăng trụ đứng có diện tích đáy là \(3{{\rm{a}}^2}\), độ dài cạnh bên là 3a. Thể tích khối lăng trụ này bằng
Chiều cao lăng trụ là 3a và diện tích đáy là \(3{{\rm{a}}^2} \Rightarrow V = 9{{\rm{a}}^3}\).
Chọn C
Cho biết thể tích V của khối nón có bán kính đáy R và độ dài đường cao h được tính theo công thức nào dưới đây?
Khối nón có bán kính đáy R, chiều cao h thì có thể tích \(V = \dfrac{1}{3}\pi .{R^2}.h\).
Chọn B
Tính bán kính r của mặt cầu có diện tích là \({\rm{S}} = 16\pi (c{m^2})\).
Ta có \({\rm{S}} = 4\pi {r^2} = 16\pi \Rightarrow r = 2cm\)
Chọn B
Cho hình chóp \({\rm{S}}.ABC\) có đáy là tam giác vuông tại B và \(SA \bot \left( {ABC} \right)\). Tính thể tích của khối cầu ngoại tiếp hình chóp \({\rm{S}}.ABC\) theo a biết SC=2a.
Trung điểm E của AC là tâm đường tròn ngoại tiếp tam giác ABC. Qua E kẻ đường thẳng \(EO\parallel SA\)(O thuộc cạnh SC). Khi đó O là trung điểm của SC và \(OE \bot \left( {ABC} \right)\).
\( \Rightarrow SO = OA \Rightarrow \)O thuộc mặt phẳng trung trực của SA. Hay O là tâm mặt cầu ngoại tiếp hình chóp \({\rm{S}}.ABC\). Bán kính mặt cầu là \(SO\).
Ta có \(SC = 2a \Rightarrow SO = a\)
\( \Rightarrow {V_{\left( O \right)}} = \dfrac{4}{3}\pi S{O^3} = \dfrac{4}{3}\pi {a^3}\)
Chọn B
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như sau:
.jpg)
Đồ thị \(y = \dfrac{1}{{2f\left( x \right) - 7}}\) có bao nhiêu đường tiệm cận đứng?
Xét phương trình \(2f\left( x \right) - 7 = 0\).
\( \Leftrightarrow f\left( x \right) = \dfrac{7}{2}\).
.jpg)
Từ bảng biến thiên ta thấy đường thẳng \(y = \dfrac{7}{2}\) cắt đồ thị tại 2 điểm phân biệt nên phương trình trên có 2 nghiệm phân biệt. Vậy hàm số \(y = \dfrac{1}{{2f\left( x \right) - 7}}\) có 2 đường tiệm cận đứng.
Chọn D
Một người gửi tiết kiệm ngân hàng 20 triệu với lãi suất không đổi là 7,2%/năm và tiền lãi hàng tháng được nhập vào vốn. Hỏi sau ít nhất bao nhiêu năm người đó thu về được tổng số tiền lớn hơn 345 triệu đồng?
Ta có \(345 = 20.{\left( {1 + 7,2\% } \right)^n}\)
\( \Leftrightarrow n = {\log _{1,072}}\left( {\dfrac{{345}}{{20}}} \right) \approx 41\) năm.
Chọn B
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật \(AD = a\), \(AB = a\sqrt 3 \). Cạnh bên SA vuông góc với đáy và SA=2a. Tính khoảng cách d từ điểm C đến mặt phẳng (SBD).
.jpg)
Ta có \(AC\) cắt \(\left( {SBD} \right)\) tại trung điểm I của AC
\( \Rightarrow \dfrac{{d\left( {A,\left( {SBD} \right)} \right)}}{{d\left( {C,\left( {SBD} \right)} \right)}} = \dfrac{{IA}}{{IC}} = 1\)
Kẻ \(AH \bot BD,AK \bot SH\)
\(\begin{array}{l} \Rightarrow BD \bot \left( {SAH} \right) \Rightarrow \left( {SBD} \right) \bot \left( {SAH} \right)\\AK \bot SH = \left( {SBD} \right) \cap \left( {SAH} \right)\\ \Rightarrow AH \bot \left( {SBD} \right)\end{array}\)
Ta có \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{D^2}}} = \dfrac{1}{{3{a^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{4}{{3{a^2}}}\)
\(\begin{array}{l}\dfrac{1}{{A{K^2}}} = \dfrac{1}{{A{H^2}}} + \dfrac{1}{{S{A^2}}} = \dfrac{4}{{3{a^2}}} + \dfrac{1}{{4{a^2}}} = \dfrac{{19}}{{12{a^2}}}\\ \Rightarrow AK = \dfrac{{2a\sqrt {57} }}{{19}}\end{array}\)
Chọn C
Có bao nhiêu giá trị nguyên thuộc (0;5) của m để phương trình \({4^x} - m{.2^{x + 1}} + 2m - 1 = 0\) có 2 nghiệm phân biệt trong đó có đúng một nghiệm dương?
\(\begin{array}{l}{4^x} - m{.2^{x + 1}} + 2m - 1 = 0\\ \Leftrightarrow \left( {{2^x} - 1} \right)\left( {{2^x} - 2m + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} = 2m - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\{2^x} = 2m - 1\left( * \right)\end{array} \right.\end{array}\)
Phương trình ban đầu có 1 nghiệm bằng 0 nên nghiệm còn lại của phương trình phải dương hay (*) phải có nghiệm dương duy nhất.
Mặt khác \(m \in \left( {0;5} \right),m \in \mathbb{Z}\) nên \(m \in \left\{ {2;3;4} \right\}\). Có 3 giá trị của m thỏa mãn.
Chọn D
Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số \(y = \left| {\dfrac{1}{4}{x^4} - \dfrac{{19}}{2}{x^2} + 30x + m - 20} \right|\) trên đoạn \(\left[ {0;2} \right]\) không vượt quá 20. Tổng các phần tử của S bằng
Xét hàm số \(g\left( x \right) = \dfrac{1}{4}{x^4} - \dfrac{{19}}{2}{x^2} + 30x + m - 20\)
\(\begin{array}{l}g'\left( x \right) = {x^3} - 19x + 30 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 3\\x = - 5\end{array} \right.\end{array}\)
\(g\left( 2 \right) = 6 + m;g\left( 0 \right) = m - 20\)
Bảng biến thiên:
.jpg)
Hàm số đồng biến trên \(\left( {0;2} \right)\)
Do \(m + 6 \ge m - 20\) nên
\( - 20 \le g\left( x \right) \le 20\forall x \in \left[ {0;2} \right]\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}m + 6 \le 20\\m - 20 \ge - 20\end{array} \right.\\ \Leftrightarrow 0 \le m \le 14\end{array}\)
Tổng tất cả các giá trị của m thỏa mãn đề bài là
\(\dfrac{{14.15}}{2} = 105\)
Chọn B
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2}\). Có bao nhiêu giá trị nguyên của m để đồ thị hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right) + m\) cắt trục hoành tại 4 điểm phân biệt?
\(f\left( {\left| x \right|} \right) + m = 0\) có 4 nghiệm phân biệt
\( \Leftrightarrow y = - m\) cắt đồ thị \(y = f\left( {\left| x \right|} \right)\) tại 4 điểm phân biệt.
\(y = f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l}{x^3} - 3{x^2},x \ge 0\\ - {x^3} - 3{x^2},x < 0\end{array} \right.\)
\(\begin{array}{l}y' = \left\{ \begin{array}{l}3{x^2} - 6x,x \ge 0\\ - 3{x^2} - 6x,x < 0\end{array} \right.\\y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = - 2\end{array} \right.\end{array}\)
Bảng biến thiên của hàm số \(y = f\left( {\left| x \right|} \right)\):
.jpg)
Từ bảng biến thiên ta thấy, đường thẳng \(y = - m\) cắt đồ thị \(y = f\left( {\left| x \right|} \right)\) tại 4 điểm phân biệt\( \Leftrightarrow - 4 < - m < 0 \Leftrightarrow 0 < m < 4\). Có 3 giá trị nguyên.
Chọn D
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right)\) thỏa mãn \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right).g\left( x \right) + 2018\), trong đó \(g\left( x \right) < 0\forall x \in \mathbb{R}\). Hàm số \(y = f\left( {1 - x} \right) + 2018x + 2019\) đồng biến trên khoảng nào?
\(\begin{array}{l}y' = - f'\left( {1 - x} \right) + 2018 > 0\\ \Leftrightarrow - \left[ {x\left( {3 - x} \right).g\left( {1 - x} \right) + 2018} \right] + 2018 > 0\\ \Leftrightarrow x\left( {3 - x} \right)g\left( {1 - x} \right) < 0\left( 1 \right)\end{array}\)
\(\left( 1 \right) \Leftrightarrow x\left( {3 - x} \right) > 0 \Leftrightarrow 0 < x < 3\)
Chọn B
Cho phương trình \({\left( {{{\log }_3}x} \right)^2} + 3m{\log _3}\left( {3x} \right) + 2{m^2} - 2m - 1 = 0\). Gọi S là tập hợp tất cả các số tự nhiên m mà phương trình có 2 nghiệm phân biệt \({{\rm{x}}_1},{x_2}\) thỏa mãn \({x_1} + {x_2} < \dfrac{{10}}{3}\). Số phần tử của S là
Đặt \(t = {\log _3}x \Rightarrow x = {3^t}\)
Phương trình trở thành
\(\begin{array}{l}{t^2} + 3m\left( {1 + t} \right) + 2{m^2} - 2m - 1 = 0\\ \Leftrightarrow {t^2} + 3mt + 2{m^2} + m - 1 = 0\\{\Delta _t} = {\left( {m - 2} \right)^2}\\ \Rightarrow \left\{ \begin{array}{l}{t_1} = - m - 1\\{t_2} = - 2m + 1\end{array} \right.\end{array}\)
\(\begin{array}{l}{x_1} + {x_2} < \dfrac{{10}}{3} \Leftrightarrow {3^{ - m - 1}} + {3^{ - 2m + 1}} < \dfrac{{10}}{3}\\ \Leftrightarrow \dfrac{{{3^{ - m}}}}{3} + 3.{\left( {{3^{ - m}}} \right)^2} < \dfrac{{10}}{3}\left( 1 \right)\end{array}\)
Đặt \({3^{ - m}} = u > 0\)
\(\begin{array}{l}\left( 1 \right) \Leftrightarrow 3{u^2} + \dfrac{u}{3} - \dfrac{{10}}{3} < 0 \Leftrightarrow \dfrac{{ - 10}}{9} < u < 1\\ \Leftrightarrow \dfrac{{ - 10}}{9} < {3^{ - m}} < 1 \Leftrightarrow - m < 0 \Leftrightarrow m > 0\end{array}\)
Để phương trình có 2 nghiệm phân biệt thì \({\Delta _t} > 0 \Leftrightarrow m \ne 2\). Vậy S có vô số phần tử.
Chọn D
Cho hình chóp S.ABCD có ABCD là hình bình hành. M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Gọi \({V_{1,}}{V_2}\) lần lượt là thể tích của khối chóp S.MNPQ và S.ABCD. Tính tỉ số \(\dfrac{{{V_2}}}{{{V_1}}}\)
.jpg)
S.ABCD đồng dạng với S.MNPQ theo tỷ số k=2 nên:
\(\dfrac{{{V_2}}}{{{V_1}}} = {\left( {\dfrac{{SA}}{{SM}}} \right)^3} = 8\)
Đồ thị hàm số \(y = \dfrac{{x - 2}}{{x + 1}}\) có đường tiệm cận ngang là
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{x - 2}}{{x + 1}} = 1\)
Chọn B
Cho hình chóp S.ABCD có tất cả các cạnh bên và cạnh đáy đều bằng nhau và ABCD là hình vuông. Góc giữa SB và mặt phẳng đáy là góc giữa cặp đường thẳng nào sau đây?
Hình chóp đã cho là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\). Hình chiếu của \(SB\) lên đáy là \(OB\).
Góc giữa \(SB\) và mặt phẳng đáy là góc giữa \(SB\) và \(BD\).
Chọn A
Tìm giá trị cực đại của hàm số \(y = {x^4} - 4{x^2} + 3\)
\(y' = 0 \Leftrightarrow 4{x^3} - 8x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \end{array} \right.\)
Chọn A
Đạo hàm của hàm số \(f\left( x \right) = \log \left( {{x^2} + 1} \right)\) là
\(f'\left( x \right) = \dfrac{{\left( {{x^2} + 1} \right)'}}{{\left( {{x^2} + 1} \right)\ln 10}} = \dfrac{{2x}}{{\left( {{x^2} + 1} \right).\ln 10}}\)
Chọn D
Giải bất phương trình \({3^{x - 1}} > {\left( {\dfrac{1}{9}} \right)^{2x - 1}}\)
\(\begin{array}{l}{3^{x - 1}} > {\left( {\dfrac{1}{9}} \right)^{2x - 1}} \Leftrightarrow {3^{x - 1}} > {3^{2 - 4x}}\\ \Leftrightarrow x - 1 > 2 - 4x\\ \Leftrightarrow x > \dfrac{3}{5}\end{array}\)
Chọn C
Với các số thực dương a và b bất kì. Mệnh đề nào sau đây đúng?
\(\begin{array}{l}{\log _2}\left( {\dfrac{{2{{\rm{a}}^3}}}{b}} \right) = {\log _2}2 + {\log _2}{a^3} - {\log _2}b\\ = 1 + 3{\log _2}a - {\log _2}b\end{array}\)
Chọn C
Cho a, b, c là số dương và khác 1. Hàm số \(y = {\log _a}x\),\(y = {\log _b}x\), \(y = {\log _c}x\) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?
.jpg)
\(\begin{array}{l}{\log _a}x > {\log _c}x > 0\\ \Rightarrow 1 < a < c\\{\log _b}x < 0 \Rightarrow 0 < b < 1\\ \Rightarrow b < a < c\end{array}\)
Chọn B
Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right) = - {x^3} + 2{x^2} - 1\) trên đoạn \(\left[ { - 1;2} \right]\) là
\(\begin{array}{l}y' = - 3{x^2} + 4x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ { - 1;2} \right]\\x = \dfrac{4}{3} \in \left[ { - 1;2} \right]\end{array} \right.\end{array}\)
Chọn B
Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và SA=a. Tính thể tích khối chóp S.ABC
\(\begin{array}{l}{{\rm{S}}_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\\ \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}}\\ = \dfrac{1}{3}.a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{12}}\end{array}\)
Chọn C
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây. Tìm \(m\) để phương trình \(f\left( x \right) = m\) có 4 nghiệm phân biệt
.jpg)
Đường thẳng \(y = m\) song song với trục hoành cắt đồ thị hàm số đã cho tại 4 điểm phân biệt khi và chỉ khi \( - 1 < m < 0\).
Chọn D
Cho khối nón có độ dài đường sinh bằng 10 và diện tích xung quanh bằng \(60\pi \). Thể tích của khối nón đã cho bằng
Bán kính của khối nón: \(r = \dfrac{{{S_{xq}}}}{{\pi l}} = \dfrac{{60\pi }}{{10\pi }} = 6\)
Chiều cao của khối nón là \(h = \sqrt {{l^2} - {r^2}} = 8\)
\( \Rightarrow V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.6^2}.8 = 96\pi \)
Chọn B
Cho tam giác ABC vuông tại A có độ dài cạnh AB=3a, AC=4a. Quay tam giác ABC quanh cạnh AB. Thể tích của khối nón tròn xoay được tạo thành là
Cạnh AB là đường cao nên \(h = 3{\rm{a}},r = 4{\rm{a}}\).
Thể tích: \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi .{\left( {4a} \right)^2}.3a = 16\pi {a^3}\)
Chọn D
Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?
Đáp án A:
\(\begin{array}{l}y' = \dfrac{{3\left( {5x + 7} \right) - 5\left( {3x + 10} \right)}}{{{{\left( {5x + 7} \right)}^2}}}\\ = - \dfrac{{29}}{{{{\left( {5x + 7} \right)}^2}}} < 0\left( L \right)\end{array}\)
\(\begin{array}{l}y' = \dfrac{{ - 1\left( {5x - 3} \right) - 5\left( { - x + 1} \right)}}{{{{\left( {5x - 3} \right)}^2}}}\\ = - \dfrac{2}{{{{\left( {5x - 3} \right)}^2}}} < 0\left( L \right)\end{array}\)
Đáp án C:
\(\begin{array}{l}y' = \dfrac{{ - 1\left( {x + 3} \right) - \left( { - x - 8} \right)}}{{{{\left( {x + 3} \right)}^2}}}\\ = \dfrac{5}{{{{\left( {x + 3} \right)}^2}}} > 0\left( {TM} \right)\end{array}\)
Đáp án D:
\(\begin{array}{l}y' = \dfrac{{3\left( {x + 1} \right) - \left( {3x + 5} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ = - \dfrac{2}{{{{\left( {x + 1} \right)}^2}}} < 0\left( L \right)\end{array}\)
Chọn C
Cho tứ diện đều ABCD cạnh bằng 2a. Tính thể tích của khối tứ diện đó
Thể tích tứ diện đều cạnh \(2a\): \(V = \dfrac{{{{\left( {2a} \right)}^3}\sqrt 2 }}{{12}} = \dfrac{{2{a^3}\sqrt 2 }}{3}\)
Chọn A
Tìm tập xác định của hàm số \(y = {\log _3}\dfrac{{3 - x}}{{x + 2}}\)
Hàm số xác định khi: \(\dfrac{{3 - x}}{{x + 2}} > 0 \Leftrightarrow - 2 < x < 3\)
Chọn B
Cho \(0 < a \ne 1\). Giá trị của biểu thức \(P = {\log _4}\left( {{a^2}\sqrt[3]{{{a^2}}}} \right)\) là
\(\begin{array}{l}P = {\log _a}\left( {{a^2}\sqrt[3]{{{a^2}}}} \right) = {\log _a}\left( {{a^2}.{a^{\dfrac{2}{3}}}} \right)\\ = {\log _a}\left( {{a^{2 + \dfrac{2}{3}}}} \right) = {\log _a}\left( {{a^{\dfrac{8}{3}}}} \right) = \dfrac{8}{3}\end{array}\)
Chọn A
Nghiệm của bất phương trình \({9^{x - 1}} - {36.3^{x - 1}} + 3 \ge 0\) là
\(\begin{array}{l}{9^{x - 1}} - {36.3^{x - 3}} + 3 \ge 0\\ \Leftrightarrow {3^{2\left( {x - 1} \right)}} - {4.3^{x - 1}} + 3 \ge 0\end{array}\)
Đặt \({3^{x - 1}} = t\left( {t > 0} \right)\), bất phương trình trở thành
\(\begin{array}{l}{t^2} - 4t + 3 \ge 0 \Leftrightarrow \left[ \begin{array}{l}t \ge 3\\t \le 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{3^{x - 1}} \ge 3\\{3^{x - 1}} \le 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x - 1 \ge 1\\x - 1 \le 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le 1\end{array} \right.\end{array}\)
Chọn B
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\). Tính \(M - m\).
\(y' = {e^{x + 1}} > 0\forall x \in \left[ {0;3} \right]\).
Hàm số liên tục trên \(\left[ {0;3} \right]\) nên
\(\begin{array}{l}m = \mathop {\min }\limits_{x \in \left[ {0;3} \right]} y = f\left( 0 \right) = e - 2;\\M = \mathop {\max }\limits_{x \in \left[ {0;3} \right]} y = f\left( 3 \right) = {e^4} - 2\\ \Rightarrow M - m = {e^4} - e\end{array}\)
Chọn B
Tập xác định của hàm số \(y = {\left( {x - 3} \right)^{ - 2}} + {\log _4}\left( {x - 2} \right)\) là
ĐKXĐ:
\(\begin{array}{l}\left\{ \begin{array}{l}x - 3 \ne 0\\x - 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\x > 2\end{array} \right.\\ \Rightarrow D = \left( {2; + \infty } \right)\backslash \left\{ 3 \right\}\end{array}\)
Chọn D
Cho đồ thị hàm số \(y = {x^3} - 3x + 2\) là \(\left( C \right)\). Phương trình tiếp tuyến của đồ thị \(\left( C \right)\) tại \(M\left( { - 2;0} \right)\) là
\(\begin{array}{l}y' = 3{x^2} - 3 \Rightarrow f'\left( { - 2} \right) = 9\\ \Rightarrow PTTT:y = 9\left( {x + 2} \right) = 9x + 18\end{array}\)
Chọn A
Bất phương trình \({\log _2}4x < 4\) có bao nhiêu nghiệm nguyên?
\(\begin{array}{l}{\log _2}4x < 4 \Leftrightarrow \left\{ \begin{array}{l}4x > 0\\4x < {2^4}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x < 4\end{array} \right. \Rightarrow x \in \left\{ {1;2;3} \right\}\end{array}\)
Chọn D
Diện tích toàn phần của một khối lập phương là \(54c{m^2}\). Tính thể tích của khối lập phương
\(\begin{array}{l}S = 6{a^2} = 54 \Rightarrow a = 3cm\\ \Rightarrow V = {3^3} = 27\left( {c{m^3}} \right)\end{array}\)
Chọn A
Cho hình lăng trụ đứng \(ABCD.{\rm{ }}A'B'C'D'\) có đáy là hình vuông cạnh bằng 6, đường chéo \(AB'\) của mặt bên \(\left( {ABB'A'} \right)\) có độ dài bằng 10. Tính thể tích V của khối lăng trụ \(ABCD.{\rm{ }}A'B'C'D'\).
Hình lăng trụ đứng có đáy là hình vuông thì là hình hộp chữ nhật.
\(\begin{array}{l}AB = 6;AB' = 10\\ \Rightarrow h = BB' = \sqrt {{{10}^2} - {6^2}} = 8\\ \Rightarrow V = {8.6^2} = 288\end{array}\)
Chọn D
Cho tứ diện \(ABC{\rm{D}}\) có đáy \(ABC\) là tam giác vuông cân tại C và nằm trong mặt phẳng vuông góc với mặt phẳng (ABD), tam giác ABD là tam giác đều có cạnh bằng a. Tính thể tích của khối tứ diện ABCD.
.jpg)
\(\Delta ABD\) đều nên \(DH \bot AB\), H là trung điểm của AB.
\( \Rightarrow DH \bot \left( {ABC} \right)\) vì \(\left( {ABD} \right) \bot \left( {ABC} \right),\)\(\left( {ABD} \right) \cap \left( {ABC} \right) = AB\).
\(DH = \dfrac{{a\sqrt 3 }}{2}\).
\(\begin{array}{l}AB = a \Rightarrow AC = BC = \dfrac{a}{{\sqrt 2 }}\\ \Rightarrow {S_{ABC}} = \dfrac{1}{2}.\dfrac{{{a^2}}}{2} = \dfrac{{{a^2}}}{4}\end{array}\)
\(V = \dfrac{1}{3}.DH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{{a^2}}}{4} = \dfrac{{{a^3}\sqrt 3 }}{{24}}\)
Chọn D
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên. Trong các giá trị a, b, c, d có bao nhiêu giá trị âm?
.jpg)
Đồ thị cắt trục tung tại điểm dưới trục hoành nên: \(d < 0\)
\(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)
\(y' = 3a{x^3} + 2bx + c\). Giả sử \(y' = 0\) có 2 nghiệm \({x_1} < 0 < {x_2}\)
\( \Rightarrow {x_1} + {x_2} > 0 \Rightarrow - \dfrac{b}{a} > 0 \Rightarrow b > 0\)
Chọn D
Tìm tất cả các giá trị của m để hàm số \(y = \dfrac{{mx + 16}}{{x + m}}\) nghịch biến trên \(\left( {0;10} \right)\)
\(y' = \dfrac{{{m^2} - 16}}{{{{\left( {x + m} \right)}^2}}}\), \(y' < 0 \Leftrightarrow {m^2} - 16 < 0 \Leftrightarrow - 4 < m < 4\)
Khi đó hàm số nghịch biến trên \(\left( { - m; + \infty } \right)\) và \(\left( { - \infty ; - m} \right)\).
Hàm số nghịch biến trên \(\left( {0;10} \right)\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\left( {0;10} \right) \subset \left( { - m; + \infty } \right)\\\left( {0;10} \right) \subset \left( { - \infty ; - m} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}0 \ge - m\\10 \le - m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m \ge 0\\m \le - 10\end{array} \right.\end{array}\).
Chọn D
Cho khối lăng trụ \(ABC{\rm{D}}.A'B'C'D'\) có thể tích băng 24, đáy ABCD là hình vuông tâm O. Thể tích của khối chóp \(A'.BCO\) bằng
.jpg)
\(\dfrac{{{S_{\Delta BCO}}}}{{{s_{ABC{\rm{D}}}}}} = \dfrac{1}{4}\)
Do \(A'.BCO\) và \(ABCD.A'B'C'D'\) có cùng chiều cao h nên:
\(\begin{array}{l}\dfrac{{{V_{A'.BCO}}}}{{{V_{ABCD.A'B'C'D'}}}} = \dfrac{{\dfrac{1}{3}.h{S_{BCO}}}}{{h.{S_{ABCD}}}} = \dfrac{1}{3}.\dfrac{1}{4} = \dfrac{1}{{12}}\\ \Rightarrow {V_{A'.BCO}} = 2\end{array}\)
Chọn D