Lời giải của giáo viên
ToanVN.com
Bán kính của khối nón: \(r = \dfrac{{{S_{xq}}}}{{\pi l}} = \dfrac{{60\pi }}{{10\pi }} = 6\)
Chiều cao của khối nón là \(h = \sqrt {{l^2} - {r^2}} = 8\)
\( \Rightarrow V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.6^2}.8 = 96\pi \)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối lăng trụ \(ABC{\rm{D}}.A'B'C'D'\) có thể tích băng 24, đáy ABCD là hình vuông tâm O. Thể tích của khối chóp \(A'.BCO\) bằng
Cho hình lăng trụ đứng \(ABCD.{\rm{ }}A'B'C'D'\) có đáy là hình vuông cạnh bằng 6, đường chéo \(AB'\) của mặt bên \(\left( {ABB'A'} \right)\) có độ dài bằng 10. Tính thể tích V của khối lăng trụ \(ABCD.{\rm{ }}A'B'C'D'\).
Với các số thực dương a và b bất kì. Mệnh đề nào sau đây đúng?
Cho hình chóp S.ABCD có ABCD là hình bình hành. M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Gọi \({V_{1,}}{V_2}\) lần lượt là thể tích của khối chóp S.MNPQ và S.ABCD. Tính tỉ số \(\dfrac{{{V_2}}}{{{V_1}}}\)
.jpg)
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\). Tính \(M - m\).
Tính bán kính r của mặt cầu có diện tích là \({\rm{S}} = 16\pi (c{m^2})\).
Cho hình chóp \({\rm{S}}.ABC\) có đáy là tam giác vuông tại B và \(SA \bot \left( {ABC} \right)\). Tính thể tích của khối cầu ngoại tiếp hình chóp \({\rm{S}}.ABC\) theo a biết SC=2a.
Nghiệm của bất phương trình \({9^{x - 1}} - {36.3^{x - 1}} + 3 \ge 0\) là
Tìm giá trị cực đại của hàm số \(y = {x^4} - 4{x^2} + 3\)
Cho biết thể tích V của khối nón có bán kính đáy R và độ dài đường cao h được tính theo công thức nào dưới đây?
Cho hình lăng trụ đứng có diện tích đáy là \(3{{\rm{a}}^2}\), độ dài cạnh bên là 3a. Thể tích khối lăng trụ này bằng
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ dưới đây. Tìm \(m\) để phương trình \(f\left( x \right) = m\) có 4 nghiệm phân biệt
.jpg)
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như sau:
.jpg)
Đồ thị \(y = \dfrac{1}{{2f\left( x \right) - 7}}\) có bao nhiêu đường tiệm cận đứng?
Có bao nhiêu giá trị nguyên thuộc (0;5) của m để phương trình \({4^x} - m{.2^{x + 1}} + 2m - 1 = 0\) có 2 nghiệm phân biệt trong đó có đúng một nghiệm dương?
Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right) = - {x^3} + 2{x^2} - 1\) trên đoạn \(\left[ { - 1;2} \right]\) là