Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Hoàng Hoa Thám
Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Hoàng Hoa Thám
-
Hocon247
-
40 câu hỏi
-
60 phút
-
86 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Tiệm cận ngang của đồ thị hàm số \(y = {3^x}\) và tiệm cận đứng của đồ thị hàm số \(y = {\log _2}x\) lần lượt có phương trình là
Hàm số \(y = {3^x}\,\left( C \right)\) có tập xác định là \(\mathbb{R}.\) \(\mathop {\lim }\limits_{x \to - \infty } {3^x} = 0,\,\mathop {\lim }\limits_{x \to + \infty } {3^x} = + \infty \) nên tiệm cận ngang của \(\left( C \right)\) có phương trình là \(y = 0.\)
Hàm số \(y = {\log _2}x\) có tập xác định là \(\left( {0; + \infty } \right),\mathop {\lim }\limits_{x \to {0^ + }} {\log _2}x = - \infty \) nên tiệm cận đứng của đồ thị hàm số \(y = {\log _2}x\) có phương trình là \(x = 0.\)
Đáp án D.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có bảng biến thiên như hình bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây ?
.png)
Từ bảng biến thiên suy ra hàm số đã cho nghịch biến trên \(\left( { - 1;1} \right).\)
Đáp án A.
Hàm số nào dưới đây đồng biến trên \(\left( { - \infty ; + \infty } \right)?\)
Hàm số \(y = 2{x^3}\) xác định trên \(\mathbb{R}\) có \(y' = 6{x^2} \ge 0,\forall \,x \in \mathbb{R}\) và \(y' = 0 \Leftrightarrow x = 0.\)
Nên hàm số đó đồng biến trên \(\left( { - \infty ; + \infty } \right).\)
Tương tự kiểm tra ba hàm số còn lại đều không thỏa mãn.
Đáp án B.
Khối lập phương và khối bát diện đều lần lượt là khối đa diện đều loại
Khối lập phương là khối đa diện đều loại \(\left\{ {4;3} \right\}.\)
Khối bát diện đều là khối đa diện đều loại \(\left\{ {3;4} \right\}.\)
Đáp án C.
Nếu khối trụ tròn xoay có bán kính đáy bằng \(2a\) và thể tích bằng \(36\pi {a^3}\,\left( {0 < a \in \mathbb{R}} \right)\) thì chiều cao bằng
Gọi chiều cao của khối trụ tròn xoay đã cho bằng \(h.\)
Khối trụ tròn xoay đã cho có thể tích là \(\pi {\left( {2a} \right)^2}h = 36\pi {a^3} \Rightarrow h = 9a.\)
Đáp án C.
Hai hàm số \(y = {\left( {x - 1} \right)^{ - 2}}\) và \(y = {x^{\dfrac{1}{2}}}\) lần lượt có tập xác định là
Hàm số \(y = {\left( {x - 1} \right)^{ - 2}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)
Hàm số \(y = {x^{\dfrac{1}{2}}}\) có tập xác định là \(\left( {0; + \infty } \right).\)
Đáp án B.
Cho mặt cầu có bán kính bằng \(3a,\) với \(0 < a \in \mathbb{R}.\) Diện tích của mặt cầu đã cho bằng
Vì mặt cầu đã cho có bán kính bằng \(3a\) nên có diện tích bằng \(4\pi {\left( {3a} \right)^2} = 36\pi {a^2}.\)
Đáp án C.
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \dfrac{{1 - x}}{{x + 1}}\) trên \(\left[ { - 3; - 2} \right]\) lần lượt bằng
Hàm số \(y = \dfrac{{1 - x}}{{x + 1}}\) liên tục trên \(D = \left[ { - 3; - 2} \right].\)
\(y' = \dfrac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} < 0,\forall \,x \in D.\)
Mà \(y\left( { - 3} \right) = - 2\) và \(y\left( { - 2} \right) = - 3.\)
Vậy \(\mathop {\max }\limits_D y = - 2,\,\mathop {\min }\limits_D y = - 3.\)
Đáp án D.
Cho khối chóp có chiều cao bằng \(6a,\) đáy là tam giác vuông cân với cạnh huyền bằng \(2a,\) biết \(0 < a \in \mathbb{R}.\) Thể tích của khối chóp đã cho bằng
Vì đáy là tam giác vuông cân có cạnh huyền bằng \(2a\) nên có cạnh góc vuông bằng \(a\sqrt 2 \)
Vậy có diện tích bằng \({a^2}.\)
Thể tích của khối chóp đã cho bằng \(\dfrac{1}{3} \cdot 6a \cdot {a^2} = 2{a^3}.\)
Đáp án A.
Cho \(a\) là số thực dương. Phương trình \({2^x} = a\) có nghiệm là
Vì \(a > 0\) nên \({2^x} = a \Leftrightarrow x = {\log _2}a.\)
Đáp án A.
Số điểm cực trị của hai hàm số \(y = {x^4}\) và \(y = {e^x}\) lần lượt bằng
Hàm số \(y = {x^4}\) có tập xác định là \(\mathbb{R},y' = 4{x^3},\) \(y' = 0 \Leftrightarrow x = 0,\) \(y' < 0 \Leftrightarrow x < 0,\) \(y' > 0 \Leftrightarrow x > 0.\)
Vậy hàm số này chỉ có \(1\) điểm cực trị.
Hàm số \(y = {e^x}\) có tập xác định là \(\mathbb{R},\) \(y' = {e^x} > 0,\forall \,x \in \mathbb{R}\).
Vậy hàm số này không có cực trị.
Đáp án D.
Số điểm cực trị của hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2},\forall \,x \in \mathbb{R}\) là
\(f'\left( x \right) = x{\left( {x - 1} \right)^2},\forall \,x \in \mathbb{R}\) \( \Rightarrow \) hàm số \(f\left( x \right)\) có tập xác định là \(\mathbb{R}\) và \(f'\left( x \right)\) đổi dấu khi \(x\) đi qua khi chỉ tạ một điểm \(0.\)
Vậy hàm số đã cho chỉ có một điểm cực trị.
Đáp án A.
Cho \(a\) và \(b\) là hai số thực dương thỏa \(a \ne 1.\) Giá trị của biểu thức \({\log _a}\left( {8b} \right) - {\log _a}\left( {2b} \right)\) bằng
Vì \(a,b > 0\) và \(a \ne 1\) nên \({\log _a}\left( {8b} \right) - {\log _a}\left( {2b} \right) = {\log _a}4 = 2{\log _a}2.\)
Đáp án B.
Cho hình hộp chữ nhật có ba kích thước là \(2a,4a,4a,\) với \(0 < a \in \mathbb{R}.\) Diện tích của mặt cầu ngoại tiếp hình hộp chữ nhật đã cho bằng
Hình hộp chữ nhật đã cho có đường chéo bằng \(\sqrt {{{\left( {2a} \right)}^2} + {{\left( {4a} \right)}^2} + {{\left( {4a} \right)}^2}} = 6a.\)
Vì các đường chéo của hình hộp chữ nhật cắt nhau tại trung điểm của mỗi đường nên bán kính của mặt cầu ngoại tiếp hình hộp chữ nhật đã cho là \(R = \dfrac{1}{2} \cdot 6a = 3a.\)
Vậy diện tích của mặt cầu đã cho bằng \(4\pi {\left( {3a} \right)^2} = 36\pi {a^2}.\)
Đáp án C.
Tính theo \(a\) chiều cao của hình chóp tứ giác đều có các cạnh bằng \(2a\) (với \(0 < a \in \mathbb{R}\)).
Đáy của hình chóp đã cho có đường chéo bằng \(2a\sqrt 2 .\)
Chiều cao của hình chóp đã cho bằng \(\sqrt {{{\left( {2a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}} = a\sqrt 2 \)
Đáp án C.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left( { - \infty ; + \infty } \right)\) và có bảng biến thiên như hình bên. Số nghiệm thực của phương trình \(f\left( x \right) = 1\) bằng
.png)
Đường thẳng \(y = 1\) cắt đồ thị của hàm số đã cho tại \(3\) điểm phân biệt.
Nên số nghiệm thực của phương trình đã cho bằng \(3.\)
Đáp án B.
Cho hàm số \(y = \dfrac{{x - m}}{{x + 1}}\) thỏa \(\mathop {\min }\limits_{\left[ {0;1} \right]} y + \mathop {\max }\limits_{\left[ {0;1} \right]} y = 5.\) Tham số thực \(m\) thuộc tập nào dưới đây ?
Hàm số \(y = \dfrac{{x - m}}{{x + 1}}\) liên tục trên \(\left[ {0;1} \right],\,y' = \dfrac{{m + 1}}{{{{\left( {x + 1} \right)}^2}}} \cdot \)
- Nếu \(m \ne - 1\) thì \(\mathop {\min }\limits_{\left[ {0;1} \right]} y + \mathop {\max }\limits_{\left[ {0;1} \right]} y = 5\) \( \Leftrightarrow y\left( 0 \right) + y\left( 1 \right) = 5\) \( \Leftrightarrow - m + \dfrac{{1 - m}}{2} = 5 \Leftrightarrow m = - 3.\)
- Nếu \(m = - 1\) thì \(y = 1,\forall \,x \ne - 1\) khi đó \(\mathop {\min }\limits_{\left[ {0;1} \right]} y + \mathop {\max }\limits_{\left[ {0;1} \right]} y = 2\) (không thỏa).
Vậy chỉ có \(m = - 3\) thỏa mãn.
Đáp án B.
Nếu đặt \(t = {3^x} > 0\) thì phương trình \({3^{2x - 1}} + {3^{x + 1}} - 12 = 0\) trở thành phương trình
Ta có \({3^{2x - 1}} + {3^{x + 1}} - 12 = 0\) \( \Leftrightarrow {\left( {{3^x}} \right)^2} + {9.3^x} - 36 = 0\,\,\left( 1 \right).\)
Đặt \(t = {3^x} > 0.\)
Vậy \(\left( 1 \right)\) trở thành \({t^2} + 9t - 36 = 0.\)
Đáp án D.
Nếu đặt \(t = {\log _2}x\) (với \(0 < x \in \mathbb{R}\)) thì phương trình \({\left( {{{\log }_2}x} \right)^2} + {\log _4}\left( {{x^3}} \right) - 7 = 0\) trở thành phương trình nào dưới đây ?
Ta có \({\left( {{{\log }_2}x} \right)^2} + {\log _4}\left( {{x^3}} \right) - 7 = 0\,\,\,\left( 1 \right)\) với \(0 < x \in \mathbb{R}\)
\(\left( 1 \right) \Leftrightarrow {\left( {{{\log }_2}x} \right)^2} + \dfrac{3}{2}{\log _2}x - 7 = 0\) \( \Leftrightarrow 2{\left( {{{\log }_2}x} \right)^2} + 3{\log _2}x - 14 = 0\,\,\,\left( 2 \right)\)
Đặt \(t = {\log _2}x\) .
Vậy \(\left( 2 \right)\) trở thành \(2{t^2} + 3t - 14 = 0\).
Đáp án A
Hàm số \(y = \sqrt[3]{{1 + {x^2}}}\) có đạo hàm \(y'\) bằng
Ta có \(y = \sqrt[3]{{1 + {x^2}}}\)\( \Rightarrow y' = \dfrac{{\left( {1 + {x^2}} \right)'}}{{3\sqrt[3]{{{{\left( {1 + {x^2}} \right)}^2}}}}} = \dfrac{{2x}}{{3\sqrt[3]{{{{\left( {1 + {x^2}} \right)}^2}}}}}\)
Đáp án A
Đạo hàm của hàm số \(y = {\log _2}\left( {3 + {x^2}} \right)\) là
Ta có \(y = {\log _2}\left( {3 + {x^2}} \right)\)\( \Rightarrow y' = \dfrac{{\left( {3 + {x^2}} \right)'}}{{\left( {3 + {x^2}} \right)\ln 2}} = \dfrac{{2x}}{{\left( {3 + {x^2}} \right)\ln 2}}\)
Đáp án B
Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích là \(V,\) khối chóp \(A'.BCC'B'\) có thể tích là \({V_1}.\) Tỉ số \(\dfrac{{{V_1}}}{V}\) bằng
.png)
Gọi \({V_2}\) là thể tích của khối tứ diện \(A'ABC\). Ta có \({V_1} + {V_2} = V \Leftrightarrow {V_1} = V - {V_2}\).
Mà \({V_2} = \dfrac{1}{3}d\left( {A',\left( {ABC} \right)} \right).S = \dfrac{V}{3}\); với \(S\) là diện tích của tam giác \(ABC\).
Vậy \({V_1} = \dfrac{{2V}}{3}\) . Do đó \(\dfrac{{{V_1}}}{V} = \dfrac{2}{3}\).
Đáp án D
Tìm diện tích xung quanh của khối nón có bán kính đáy bằng \(8a,\) thể tích bằng \(128\pi {a^3},\) với \(0 < a \in \mathbb{R}.\)
Gọi \(h,l\) lần lượt là chiều cao, đường sinh của khối nón đã cho.
Thể tích của khối nón đã cho là \(\dfrac{1}{3}\pi {\left( {8a} \right)^2}.h = 128\pi {a^3}\) \( \Rightarrow h = 6a \Rightarrow l = \sqrt {{{\left( {8a} \right)}^2} + {{\left( {6a} \right)}^2}} = 10a\)
Diện tích xung quanh của khối nón đã cho bằng \(\pi 8a.10a = 80\pi {a^2}\).
Đáp án A
Đạo hàm của hàm số \(y = {2^{\cos x}}\) là
Ta co \(y = {2^{\cos x}}\) \( \Rightarrow y' = \left( {\ln 2} \right){2^{\cos x}}\left( {\cos x} \right)' = - \left( {\ln 2} \right){2^{\cos x}}\sin x\)
Đáp án D
Hàm số \(y = \sqrt {{x^4} + 1} \) có đạo hàm \(y'\) bằng
Ta có \(y = \sqrt {{x^4} + 1} \)\( \Rightarrow y' = \dfrac{{\left( {{x^4} + 1} \right)'}}{{2\sqrt {{x^4} + 1} }} = \dfrac{{2{x^3}}}{{2\sqrt {{x^4} + 1} }}\)
Đáp án C
Số tiệm cận đứng và số tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{2{x^2} + 2x}}{{{x^2} + 2x + 1}}\) lần lượt là
Hàm số \(y = \dfrac{{2{x^2} + 2x}}{{{x^2} + 2x + 1}}\,\,\left( C \right)\) có tập xác định là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{2{x^2} + 2x}}{{{x^2} + 2x + 1}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{2x\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}} = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{2x}}{{x + 1}} = - \infty \) nên \(\left( C \right)\) chỉ có tiệm cận đứng là \(x = - 1\).
Vì \(\mathop {\lim }\limits_{x \to - \infty } y = 2\) và\(\mathop {\lim }\limits_{x \to + \infty } y = 2\) nên \(\left( C \right)\) chỉ có tiệm cận ngang là \(y = 2\).
Đáp án D
Cho \(0 < x \in \mathbb{R}.\) Đạo hàm của hàm số \(y = \ln \left( {x\sqrt {{x^2} + 1} } \right)\) là
Ta có \(0 < x \in \mathbb{R}\). Vậy \(y = \ln \left( {x\sqrt {{x^2} + 1} } \right) = \ln x + \dfrac{1}{2}\ln \left( {{x^2} + 1} \right)\)
\( \Rightarrow y' = \dfrac{1}{x} + \dfrac{1}{2}.\dfrac{{2x}}{{{x^2} + 1}} = \dfrac{{2{x^2} + 1}}{{x\left( {{x^2} + 1} \right)}}\)
Đáp án D
Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều, \(AB = 6a,\) với \(0 < a \in \mathbb{R},\) góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(45^\circ .\) Thể tích của khối lăng trụ đã cho bằng
.png)
Vì \(A'A \bot \left( {ABC} \right)\) nên góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\) là \(\widehat {A'BA} = 45^\circ \).
\( \Rightarrow \Delta A'AB\) vuông cân tại \(A\) \( \Rightarrow A'A = AB = 6a\).
Tam giác đều \(ABC\) có cạnh \(AB = 6a\) nên có diện tích bằng \(\dfrac{{\sqrt 3 {{\left( {6a} \right)}^2}}}{4} = 9\sqrt 3 {a^2}\).
Thể tích của khối lăng trụ đã cho bằng \(6a.9\sqrt 3 {a^2} = 54\sqrt 3 {a^3}\).
Đáp án A
Đường cong ở hình bên là đồ thị của hàm số \(y = a{x^3} + b{x^2} + c;\) với \(x\) là biến số thực; \(a,b,c\) là ba hằng số thực, \(a \ne 0.\) Mệnh đề nào dưới đây đúng ?
.png)
Hàm số \(y = a{x^3} + b{x^2} + c\) có tập xác định là \(\mathbb{R}\).
Từ đồ thị \(\left( C \right)\) của hàm số đã cho suy ra \(a < 0\) và \(\left( C \right)\) cắt \(Oy\) tại điểm \(\left( {0;c} \right)\) với \(c < 0\).
\(y' = 3a{x^2} + 2bx \); \(y' = 0 \Leftrightarrow x = 0\) hoặc \(x = \dfrac{{ - 2b}}{{3a}}\); từ đồ thị \(\left( C \right)\) suy ra \(\dfrac{{ - 2b}}{{3a}} > 0 \Rightarrow b > 0\).
Đáp án B
Cho hai số thực dương \(a\) và \(b\) thỏa \(a \ne 1 \ne {a^2}b.\) Giá trị của biểu thức \(2 - \dfrac{3}{{2 + {{\log }_a}b}}\) bằng
Ta có \(a > 0,\,\,b > 0\) và \(a \ne 1 \ne {a^2}b\).
Vậy \(2 - \dfrac{3}{{2 + {{\log }_a}b}} = \dfrac{{1 + 2{{\log }_a}b}}{{2 + {{\log }_a}b}}\)\( = \dfrac{{{{\log }_a}a + {{\log }_a}{b^2}}}{{{{\log }_a}{a^2} + {{\log }_a}b}} = \dfrac{{{{\log }_a}\left( {a{b^2}} \right)}}{{{{\log }_a}\left( {{a^2}b} \right)}} = {\log _{\left( {{a^2}b} \right)}}\left( {a{b^2}} \right)\)
Đáp án B
Cho hàm số \(f\left( x \right)\) có đạo hàm\(f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu như hình bên. Hàm số \(f\left( {3 - 2x} \right)\) đồng biến trên khoảng nào dưới đây ?
.png)
Hàm số \(y = f\left( {3 - 2x} \right)\) có tập xác định là \(\mathbb{R}\), \(y' = - 2f'\left( {3 - 2x} \right)\).
Vậy \(y' > 0 \Leftrightarrow f'\left( {3 - 2x} \right) < 0\)\( \Leftrightarrow \left[ \begin{array}{l}3 - 2x < - 3\\ - 1 < 3 - 2x < 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 3\\1 < x < 2\end{array} \right.\)
Do đó hàm số \(y = f\left( {3 - 2x} \right)\) đồng biến trên \(\left( {3;4} \right)\).
Đáp án A
Số giá trị nguyên của tham số \(m\) để hàm số \(y = {x^3} - m{x^2} - 2mx\) đồng biến trên \(\mathbb{R}\) bằng
Hàm số \(y = {x^3} - m{x^2} - 2mx\) có tập xác định là \(\mathbb{R}\).
Hàm số đã cho đồng biến trên \(\mathbb{R}\)\( \Leftrightarrow y' = 3{x^2} - 2mx - 2m \ge 0,\,\,\forall x \in \mathbb{R}\)
\( \Leftrightarrow \Delta ' = {m^2} + 6m \le 0 \Leftrightarrow - 6 \le m \le 0\).
Vậy có \(7\) giá trị nguyên của tham số \(m\) thỏa mãn.
Đáp án C
Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh bằng \(4a,\) \(SA\) vuông góc với mặt phẳng đáy, \(SA = 6a\) với \(0 < a \in \mathbb{R}.\) Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng
.png)
Tam giác đều \(ABC\) cạnh bằng \(4a\) có diện tích bằng \(\dfrac{{\sqrt 3 {{\left( {4a} \right)}^2}}}{4} = 4\sqrt 3 {a^2}\).
Vì \(SA \bot \left( {ABC} \right)\) nên khối chóp \(S.ABC\) có thể tích \(V = \dfrac{1}{3}.SA.4\sqrt 3 {a^2} = \dfrac{1}{3}.6a.4\sqrt 3 {a^2} = 8\sqrt 3 {a^3}\)
\(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AB\). Tam giác \(SAB\) vuông tại \(A\) có \(S{B^2} = S{A^2} + A{B^2}\)\( = {\left( {6a} \right)^2} + {\left( {4a} \right)^2} = 52{a^2}\)
\( \Rightarrow SB = 4a\sqrt {13} \). Tương tự \(SC = 4a\sqrt {13} \).
Tam giác \(SBC\) có nửa chu vi \(p = \dfrac{{SB + SC + BC}}{2} = \left( {2 + 4\sqrt {13} } \right)a\) nên có diện tích \({S_1} = \sqrt {p\left( {p - SB} \right)\left( {p - SC} \right)\left( {p - BC} \right)} = 8\sqrt 3 {a^2}\).
Vậy \(d\left( {A,\left( {SBC} \right)} \right) = \dfrac{{3V}}{{{S_1}}} = 3a\).
Đáp án B
Số tiệm cận đứng và số tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{\sqrt {x + 1} - 1}}{{{x^3} - 4x}}\) lần lượt là
Hàm số \(y = \dfrac{{\sqrt {x + 1} - 1}}{{{x^3} - 4x}}\,\,\left( C \right)\) có tập xác định là \(\left[ { - 1; + \infty } \right)\backslash \left\{ {0;2} \right\}\).
Ta có \(\mathop {\lim }\limits_{x \to 0} y = \mathop {\lim }\limits_{x \to 0} \,\,\dfrac{{\sqrt {x + 1} - 1}}{{{x^3} - 4x}}\)\( = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{x\left( {{x^2} - 4} \right)\left( {\sqrt {x + 1} + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 0} \,\,\dfrac{1}{{\left( {{x^2} - 4} \right)\left( {\sqrt {x + 1} + 1} \right)}} = \dfrac{{ - 1}}{8}\)
và \(\mathop {\lim }\limits_{x \to {2^ + }} \,\,y\, = \mathop {\lim }\limits_{x \to {2^ + }} \,\dfrac{{\sqrt {x + 1} - 1}}{{{x^3} - 4x}} = + \infty \).
Vậy \(\left( C \right)\) chỉ có tiệm cận đứng là \(x = 2\).
Vì \(\mathop {\lim }\limits_{x \to + \infty } \,\,y = 0\) nên \(\left( C \right)\) chỉ có tiệm cận ngang là \(y = 0\).
Đáp án B
Cho hàm số \(y = {x^4} + 8{x^2} + m\) có giá trị nhỏ nhất trên \(\left[ {1;3} \right]\) bằng \(6.\) Tham số thực \(m\) bằng
Hàm số \(y = {x^4} + 8{x^2} + m\) liên tục trên \(D = \left[ {1;3} \right]\).
\(y' = 4{x^3} + 16x = 4x\left( {{x^2} + 4} \right)\), \(y' = 0 \Leftrightarrow x = 0 \notin D\).
\(y\left( 1 \right) = 9 + m,\,\,\,y\left( 3 \right) = 153 + m\).
Vậy \(\mathop {\min }\limits_D y = 9 + m = 6 \Leftrightarrow m = - 3\).
Đáp án D
Tập hợp các tham số thực \(m\) để hàm số \(y = \dfrac{x}{{x - m}}\) nghịch biến trên \(\left( {1; + \infty } \right)\) là
Hàm số \(y = \dfrac{x}{{x - m}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ m \right\}\), \(y' = \dfrac{{ - m}}{{{{\left( {x - m} \right)}^2}}}\).
Hamg số đã cho nghịch biến trên \(\left( {1; + \infty } \right)\)\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{ - m}}{{{{\left( {x - m} \right)}^2}}} < 0\\m \notin \left( {1; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m < 0\\m \le 1\end{array} \right.\) \( \Leftrightarrow 0 < m \le 1\).
Đáp án C
Đường cong ở hình bên là đồ thị của hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c;\) với \(x\) là biến số thực; \(a,b,c\) là ba hằng số thực, \(a \ne 0.\) Gọi \(k\) là số nghiệm thực của phương trình \(f\left( x \right) = 1.\) Mệnh đề nào dưới đây đúng ?
.png)
Hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có tập xác định là \(\mathbb{R}\).
Từ đồ thị \(\left( C \right)\) của hàm số đã cho suy ra \(a > 0\) và \(\left( C \right)\) cắt \(Oy\) tại điểm \(\left( {0;c} \right)\) với \(c < 0\).
\(y' = 4a{x^3} + 2bx = 2x\left( {2a{x^2} + b} \right)\); \(y' = 0 \Leftrightarrow x = 0\) hoặc \({x^2} = \dfrac{{ - b}}{{2a}}\); từ đồ thị \(\left( C \right)\) suy ra \(\dfrac{{ - b}}{{2a}} > 0 \Rightarrow b < 0\) .
Vậy \(abc > 0\).
Đường thẳng \(y = 1\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt nên phương trình \(f\left( x \right) = 1\) có hai nghiệm thực phân biệt.
Đáp án D
Hàm số \(y = {x^3} + m{x^2}\) đạt cực đại tại \(x = - 2\) khi và chỉ khi giá trị của tham số thực \(m\) bằng
Hàm số \(y = {x^3} + m{x^2}\) xác định trên \(\mathbb{R}\) có \(y' = 3{x^2} + 2mx\).
Hàm số đã cho đạt cực đại tại \(x = - 2\) thì \(y'\left( { - 2} \right) = 0\)\( \Leftrightarrow 12 - 4m = 0 \Leftrightarrow m = 3\).
Ngược lại khi \(m = 3\) thì hàm số đã cho có \(y'' = 6x + 6\)\( \Rightarrow y''\left( { - 2} \right) = - 6 < 0\).
Vậy chi có \(m = 3\) thỏa mãn.
Đáp án D
Tiệm cận ngang của đồ thị hàm số \(y = \sqrt {4{x^2} - 8x + 5} + 2x\) có phương trình là
Hàm số \(y = \sqrt {4{x^2} - 8x + 5} + 2x\,\,\left( C \right)\) có tập xác định là \(\mathbb{R}\).
\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} - 8x + 5} + 2x} \right)\)\( = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - 8x + 5}}{{\sqrt {4{x^2} - 8x + 5} - 2x}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - 8 + \dfrac{5}{x}}}{{ - \sqrt {4 - \dfrac{8}{x} + \dfrac{5}{{{x^2}}}} }} = 2\)
Vậy tiệm cận ngang của \(\left( C \right)\) có phương trình là \(y = 2\).
Đáp án C
Một công ty thành lập vào đầu năm 2015, tổng số tiền trả lương năm 2015 của công ty là \(500\) triệu đồng. Biết rằng từ năm \(2016\) trở đi, mỗi năm thì tổng số tiền trả lương của công ty tăng thêm \(9\% \) so với năm kế trước. Năm đầu tiên có tổng số tiền trả lương năm đó của công ty lớn hơn 1 tỷ đồng là
Đặt \(A = 500\) triệu đồng, \(B = 1\) tỷ đồng, \(r = 0,09\).
Tổng số tiền trả lương năm 2016 (sau \(1\) năm kể từ năm 2015) của công ty là \(A + A.0,09 = A\left( {1 + 0,09} \right)\) đồng.
Tổng số tiền trả lương năm 2017 (sau 2 năm kể từ năm 2015) của công ty là \(A{\left( {1 + 0,09} \right)^2}\) đồng.
Tương tợ tổng số tiền trả lương sau \(n\) năm kể từ năm 2015 của công ty là \(A{\left( {1 + 0,09} \right)^n}\) đồng.
Vậy \(A{\left( {1 + 0,09} \right)^n} > B\)\( \Leftrightarrow 500{\left( {1 + 0,09} \right)^n} > 1000\) \( \Leftrightarrow 1,{09^n} > 2 \Leftrightarrow n > {\log _{1,09}}2\) \( \Rightarrow n > \approx 8,04\)
Do đó sau \(9\) năm kể từ năm 2015, hay năm đầu tiên có tổng số tiền trả lương năm đó của công ty lớn hơn \(1\) tỷ đồng là 2024.
Đáp án B