Lời giải của giáo viên
ToanVN.com
Hàm số \(y = \sqrt {4{x^2} - 8x + 5} + 2x\,\,\left( C \right)\) có tập xác định là \(\mathbb{R}\).
\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} - 8x + 5} + 2x} \right)\)\( = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - 8x + 5}}{{\sqrt {4{x^2} - 8x + 5} - 2x}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - 8 + \dfrac{5}{x}}}{{ - \sqrt {4 - \dfrac{8}{x} + \dfrac{5}{{{x^2}}}} }} = 2\)
Vậy tiệm cận ngang của \(\left( C \right)\) có phương trình là \(y = 2\).
Đáp án C
CÂU HỎI CÙNG CHỦ ĐỀ
Đường cong ở hình bên là đồ thị của hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c;\) với \(x\) là biến số thực; \(a,b,c\) là ba hằng số thực, \(a \ne 0.\) Gọi \(k\) là số nghiệm thực của phương trình \(f\left( x \right) = 1.\) Mệnh đề nào dưới đây đúng ?
.png)
Nếu khối trụ tròn xoay có bán kính đáy bằng \(2a\) và thể tích bằng \(36\pi {a^3}\,\left( {0 < a \in \mathbb{R}} \right)\) thì chiều cao bằng
Cho hàm số \(f\left( x \right)\) có đạo hàm\(f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu như hình bên. Hàm số \(f\left( {3 - 2x} \right)\) đồng biến trên khoảng nào dưới đây ?
.png)
Số điểm cực trị của hai hàm số \(y = {x^4}\) và \(y = {e^x}\) lần lượt bằng
Cho hai số thực dương \(a\) và \(b\) thỏa \(a \ne 1 \ne {a^2}b.\) Giá trị của biểu thức \(2 - \dfrac{3}{{2 + {{\log }_a}b}}\) bằng
Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích là \(V,\) khối chóp \(A'.BCC'B'\) có thể tích là \({V_1}.\) Tỉ số \(\dfrac{{{V_1}}}{V}\) bằng
Tính theo \(a\) chiều cao của hình chóp tứ giác đều có các cạnh bằng \(2a\) (với \(0 < a \in \mathbb{R}\)).
Hàm số nào dưới đây đồng biến trên \(\left( { - \infty ; + \infty } \right)?\)
Nếu đặt \(t = {\log _2}x\) (với \(0 < x \in \mathbb{R}\)) thì phương trình \({\left( {{{\log }_2}x} \right)^2} + {\log _4}\left( {{x^3}} \right) - 7 = 0\) trở thành phương trình nào dưới đây ?
Cho khối chóp có chiều cao bằng \(6a,\) đáy là tam giác vuông cân với cạnh huyền bằng \(2a,\) biết \(0 < a \in \mathbb{R}.\) Thể tích của khối chóp đã cho bằng
Số tiệm cận đứng và số tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{\sqrt {x + 1} - 1}}{{{x^3} - 4x}}\) lần lượt là
Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều, \(AB = 6a,\) với \(0 < a \in \mathbb{R},\) góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(45^\circ .\) Thể tích của khối lăng trụ đã cho bằng
Cho hàm số \(y = {x^4} + 8{x^2} + m\) có giá trị nhỏ nhất trên \(\left[ {1;3} \right]\) bằng \(6.\) Tham số thực \(m\) bằng
Một công ty thành lập vào đầu năm 2015, tổng số tiền trả lương năm 2015 của công ty là \(500\) triệu đồng. Biết rằng từ năm \(2016\) trở đi, mỗi năm thì tổng số tiền trả lương của công ty tăng thêm \(9\% \) so với năm kế trước. Năm đầu tiên có tổng số tiền trả lương năm đó của công ty lớn hơn 1 tỷ đồng là
Tiệm cận ngang của đồ thị hàm số \(y = {3^x}\) và tiệm cận đứng của đồ thị hàm số \(y = {\log _2}x\) lần lượt có phương trình là