Lời giải của giáo viên
ToanVN.com
Đặt \(A = {\left( {{x^2} - 9} \right)^2} + \left| {y - 3} \right| - 1\)
Ta có:
\(\begin{array}{l}{\left( {{x^2} - 9} \right)^2} \ge 0;\,\left| {y - 3} \right|\,\, \ge 0\\ \Rightarrow {\left( {{x^2} - 9} \right)^2} + \left| {y - 3} \right| - 1 \ge 0 + 0 - 1\\ \Rightarrow {\left( {{x^2} - 9} \right)^2} + \left| {y - 3} \right| - 1 \ge - 1\end{array}\)
Hay \(A \ge - 1\) . Dấu xảy ra khi và chỉ khi: \(\left\{ \begin{array}{l}{x^2} - 9 = 0\\y - 3 = 0\end{array} \right.\) hay \(x = - 3\) hoặc \(x = 3\) và \(y = 3\)
Vậy: Giá trị nhỏ nhất của A là: \(A = - 1\) khi \(x = - 3;y = 3\) hoặc \(x = y = 3\)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(A = \left( {\frac{{ - 3}}{5}{x^2}{y^2}} \right).\frac{2}{3}{x^2}y\). Đơn thức A sau khi thu gọn là:
Tam giác \(ABC\) có các số đo như trong hình 2, ta có:
Cho \(B = \left( { - 2\frac{1}{3}{x^2}{y^2}} \right).\frac{9}{{16}}x{y^2}.{\left( { - 2{x^2}y} \right)^3}\). Đơn thức B sau khi thu gọn là:
Cho tam giác \(ABC\) các đường phân giác \(AM\) của góc \(A\) và \(B{\rm N}\) của góc \(B\) cắt nhau tại \(I\) Khi đó, điểm \(I\):
Bộ ba số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông?
Bậc của đa thức \(M = {x^6} + 5{x^2}{y^2} + {y^4} - {x^4}{y^3} - 1\) là:
Cho \(a,b,c \ne 0\) thỏa mãn \(a + b + c = 0\) Tính: \(A = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right)\)
Xác định đa thức bậc nhất \(P\left( x \right) = ax + b\) biết rằng \(P\left( { - 1} \right) = 5\) và \(P\left( { - 2} \right) = 7.\)
Trong tam giác \(M{\rm N}P\) có điểm \(O\) cách đều 3 đỉnh tam giác. Khi đó O là giao điểm của:
Trên hình 1 ta có MN là đường trung trực của đoạn thẳng AB và \(MI > {\rm N}I\) .Khi đó ta có:
Thu gọn đơn thức \(4{x^3}y\left( { - 2{x^2}{y^3}} \right).\left( { - x{y^5}} \right)\) ta được:
Số nào sau đây là nghiệm của đa thức \(g\left( y \right) = \frac{2}{3}y + 1\)
Cho hai đa thức : \(P\left( x \right) = 2{x^2} - 1\) và \(Q\left( x \right) = x + 1\). Hiệu \(P\left( x \right) - Q\left( x \right)\) bằng:
Cho \(\Delta ABC\) vuông tại \(B\) có \(AB = 8cm;AC = 17cm.\) Số đo cạnh \(BC\) là: