Tìm giá trị lớn nhất của hàm số \(f\left( x \right) = {x^3} - 2{x^2} - 4x + 1\) trên đoạn [1;3].
A. \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = \frac{{67}}{{27}}.\)
B. \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = - 2.\)
C. \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = - 7.\)
D. x (cm)
Lời giải của giáo viên
ToanVN.com
\(f'\left( x \right) = 3{x^2} - 4x - 4 \\ \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 2 \in \left[ {1;3} \right]\\ x = - \frac{2}{3} \notin \left[ {1;3} \right] \end{array} \right..\)
Ta có:
\(\left\{ \begin{array}{l} f\left( 1 \right) = - 4\\ f\left( 2 \right) = - 7\\ f\left( 3 \right) = - 2 \end{array} \right. \Rightarrow \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = - 2.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Với điểm O cố định thuộc mặt phẳng (P) cho trước, xét đường thẳng l thay đổi đi qua điểm O và tạo với mặt phẳng (P) một góc \({30^o}\). Tập hợp các đường thẳng trong không gian là gì?
Cho hai điểm A, B phân biệt. Tập hợp tâm những mặt cầu đi qua A và B là
Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng a
Tính khoảng cách d giữa hai điểm cực trị của đồ thị hàm số \(y = \left( {x + 1} \right){\left( {x - 2} \right)^2}\).
Tìm tất cả các giá trị thực của tham số m để phương trình \(2{x^3} - 3{x^2} = 2m + 1\) có đúng hai nghiệm phân biệt.
Giá trị của \({\log _a}\left( {\dfrac{{a^2}\root 3 \of {{a^2}} \root 5 \of {{a^4}} }{{\root {15} \of {{a^7}} }}} \right)\) bằng bao nhiêu?
Biết rằng đồ thị hàm số \(y = {x^3} - 3{x^2} + 2x - 1\) cắt đồ thị hàm số \(y = {x^2} - 3x + 1\) tại hai điểm phân biệt A và B. Tính độ dài đoạn thẳng AB.
Gọi \({y_{{\rm{CD}}}},{\rm{ }}{y_{{\rm{CT}}}}\) lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số \(y = {x^3} - 3x\). Mệnh đề nào sau đây là đúng?
Giải bất phương trình mũ \({1 \over {{3^x} + 5}} \le {1 \over {{3^{x + 1}} - 1}}\).
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ:
Mệnh đề nào dưới đây đúng?
Tìm tất cả các giá trị của tham số m để đồ thị hàm số \(y = \left( {x - 1} \right)\left( {{x^2} + mx + m} \right)\) cắt trục hoành tại ba điểm phân biệt.
Tập giá trị của hàm số \(f\left( x \right) = x + \frac{9}{x}\) với \(x \in \left[ {2;4} \right]\) là đoạn [a;b]. Tính P = b - a.