Năm 2018 dân số Việt Nam là \(96.961.884\) người và tỉ lệ tăng dân số năm đó là \(0,98\% \). Biết rằng sự gia tăng dân số được tính theo công thức \(S = A.{e^{Nr}}\), trong đó \(A\) là dân số của năm lấy mốc tính, \(S\) là dân số sau \(N\) năm, \(r\) là tỉ lệ tăng dân số hằng năm. Với tỉ lệ tăng dân số như vậy thì ít nhất đến năm nào dân số nước ta đạt \(110\) triệu người?
A.
\(2031\)
B. \(2035\)
C. \(2025\)
D. \(2041\)
Lời giải của giáo viên
ToanVN.com
Dân số nước ta đạt 110 triệu người nên ta có:
\(\begin{array}{l}S = 110000000\\ \Leftrightarrow A.{e^{N.r}} = 110000000\\ \Leftrightarrow 96961884.{e^{N.0,98\% }} = 110000000\\ \Leftrightarrow N = 12,87\end{array}\)
Như vậy, sau ít nhất 13 năm thì dân số nước ta đạt 110 triệu người hay đến năm 2031 thì dân số nước ta đạt 110 triệu người.
Chọn A
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(a\) là số thực dương khác 1 và \(b\) là số thực khác 0. Mệnh đề nào sau đây sai?
Cho \(a\) là số thực dương tùy ý, biểu thức \({a^{\dfrac{2}{3}}}.{a^{\dfrac{2}{5}}}\) dưới dạng lũy thừa với số mũ hữu tỉ là
Cho phương trình \(\log _{\sqrt 2 }^2x - 3{\log _2}2x + 1 = 0\). Nếu đặt \(t = {\log _2}x\) thì được phương trình
Gọi \(l,h,R\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón. Diện tích toàn phần \({S_{tp}}\) của hình nón là:
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 2{x^3} + 3{x^2} - 12x + 2\) trên đoạn \(\left[ { - 1;2} \right]\). Tỉ số \(\dfrac{M}{m}\) bằng
Đồ thị hàm số \(y = \left( {x - 1} \right)\left( {{x^2} - 4x + 4} \right)\) có bao nhiêu điểm chung với trục \(Ox?\)
Hình chóp tam giác đều có bao nhiêu mặt phẳng đối xứng?
Một hình nón có đường kính đường tròn đáy bằng \(10cm\) và chiều dài đường sinh bằng \(15cm\). Thể tích của khối nón bằng
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BC = 3a,AC = 5a,\) cạnh bên \(A'A = 6a\). Thể tích khối lăng trụ bằng
Đạo hàm của hàm số \(y = {\log _2}\left( {{x^2} - 2x + 3} \right)\) là
Gọi \(l,h,R\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ. Diện tích xung quanh của hình trụ là
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
.png)
Số điểm cực trị của hàm số bằng
Hàm số \(y = {\left( {2x - 4} \right)^{\dfrac{2}{3}}}\) có tập xác định là
Cho \(a\) là số thực dương khác 1. Giá trị của biểu thức \(P = {\log _{{a^2}}}\sqrt[4]{{{a^3}}}\)