Câu hỏi Đáp án 3 năm trước 39

Làng gốm truyền thống Bát Tràng dự kiến làm một bức tranh gồm hình vuông cạnh \(4{\mkern 1mu} {\mkern 1mu} \left( m \right)\), thiết kế có 4 đường parabol chung đỉnh tại tâm của hình vuông, tạo nên bốn cánh hoa (tham khảo hình vẽ). Phần diện tích cánh hoa (phần tô đậm) sẽ được tráng một lớp men đặc biệt. Chi phí tráng lớp men đó có đơn giá là 24 triệu đồng/\({m^2}\). Tính số tiền phải trả để tráng men cho 4 cánh hoa.

A. 132 triệu    

B. 96 triệu    

C. 32 triệu      

D. 128 triệu  

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Gắn hệ trục tọa độ như hình vẽ.

Parbol đi qua gốc tọa độ và điểm \(A,{\mkern 1mu} {\mkern 1mu} B\) có phương trình \(y = \dfrac{{{x^2}}}{2}\).

Parbol đi qua gốc tọa độ và điểm \(B,{\mkern 1mu} {\mkern 1mu} C\) có phương trình \(x = \dfrac{{{y^2}}}{2} \Leftrightarrow {y^2} = 2x \Leftrightarrow y = \sqrt {2x} {\mkern 1mu} {\mkern 1mu} \left( {x \ge 0} \right)\).

Diện tích 1 cánh hoa là diện tích hình phẳng giới hạn bởi parabol \(y = \dfrac{{{x^2}}}{2}\);\(y = \sqrt {2x} \), đường thẳng \(x = 2;{\mkern 1mu} {\mkern 1mu} x = 0\) là \({S_1} = \int\limits_0^2 {\left( {\sqrt {2x} {\rm{\;}} - \dfrac{{{x^2}}}{2}} \right)dx} {\rm{\;}} = \dfrac{4}{3}\).

\( \Rightarrow \) Diện tích phần tráng men là: \(S = 4{S_1} = \dfrac{{16}}{3}{\mkern 1mu} {\mkern 1mu} \left( {{m^2}} \right)\).

Vậy số tiền cần phải trả là \(T = 24.\dfrac{{16}}{3} = 128\) triệu.

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(3x - 2\) và đồ thị hàm số \(y = {x^2}\) quanh quanh trục Ox.

Xem lời giải » 3 năm trước 72
Câu 2: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( {1;1;2} \right),B\left( {2;0;1} \right)\). Mặt phẳng đi qua A và vuông góc với đường thẳng AB có phương trình là:

Xem lời giải » 3 năm trước 68
Câu 3: Trắc nghiệm

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 2}}\), biết tiếp tuyến có hệ số góc \(k = {\rm{\;}} - 3\).

Xem lời giải » 3 năm trước 68
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho \(A\left( {1;1; - 1} \right),B\left( { - 1;2;0} \right),C\left( {3; - 1; - 2} \right)\). Giả sử \(M\left( {a;b;c} \right)\) thuộc mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 861\) sao cho \(P = 2M{A^2} - 7M{B^2} + 4M{C^2}\) đạt giá trị nhỏ nhất. Giá trị \(T = \left| a \right| + \left| b \right| + \left| c \right|\) bằng

Xem lời giải » 3 năm trước 66
Câu 5: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\)\(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là

Xem lời giải » 3 năm trước 65
Câu 6: Trắc nghiệm

Hãy tìm số nghiệm \(x\) thuộc \(\left[ {0;100} \right]\) của phương trình sau: \({2^{\cos \pi x - 1}} + \dfrac{1}{2} = \cos \pi x + {\log _4}\left( {3\cos \pi x - 1} \right)\)

Xem lời giải » 3 năm trước 65
Câu 7: Trắc nghiệm

Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \({d_1}:{\mkern 1mu} {\mkern 1mu} \dfrac{{x - 2}}{2} = \dfrac{{y + 3}}{{ - 1}} = \dfrac{{z - 5}}{{ - 3}}\) và \({d_2}:{\mkern 1mu} {\mkern 1mu} \dfrac{{x + 1}}{{ - 2}} = \dfrac{{y + 3}}{1} = \dfrac{{z - 2}}{3}.\) Khi đó phương trình mặt phẳng \(\left( P \right)\) là:

Xem lời giải » 3 năm trước 64
Câu 8: Trắc nghiệm

Cho tứ diện đều ABCD có cạnh bằng 4. Hình trụ \(\left( T \right)\) có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD. Diện tích xung quanh của \(\left( T \right)\) bằng:

Xem lời giải » 3 năm trước 64
Câu 9: Trắc nghiệm

Tập nghiệm của bất phương trình \({\log _{\dfrac{1}{3}}}\dfrac{{1 - 2x}}{x} > 0\) có dạng \(\left( {a;b} \right)\). Tính \(T = 3a - 2b.\)

Xem lời giải » 3 năm trước 63
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x - 3}}{4} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z + 2}}{3}\). Vectơ nào dưới đây là một vectơ chỉ phương của d?

Xem lời giải » 3 năm trước 63
Câu 11: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 12{x^2} - 4\) trên đoạn \(\left[ {0;9} \right]\) bằng:

Xem lời giải » 3 năm trước 63
Câu 12: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, \(AB = a;\,\,AD = a\sqrt 3 \). Thể tích khối chóp S.ABCD bằng

Xem lời giải » 3 năm trước 61
Câu 13: Trắc nghiệm

Cho ba điểm \(A\left( {2;1; - 1} \right),\)\(B\left( { - 1;0;4} \right),\)\(C\left( {0; - 2; - 1} \right)\). Mặt phẳng đi qua \(A\) và vuông góc với BC có phương trình là

Xem lời giải » 3 năm trước 60
Câu 14: Trắc nghiệm

Cho khối lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a và mặt phăng (DBC’) hợp với mặt đáy (ABCD) một góc \({60^0}\). Tính theo a thể tích của khối lăng trụ ABCD.A’B’C’D’.

Xem lời giải » 3 năm trước 59
Câu 15: Trắc nghiệm

Cho hàm số \(y = f\left( x \right).\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới. Hàm số \(g\left( x \right) = f\left( {2 + {e^x}} \right)\)nghịch biến trên khoảng nào trong các khoảng sau đây?

Xem lời giải » 3 năm trước 59

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »