Trong không gian Oxyz, cho \(A\left( {1;1; - 1} \right),B\left( { - 1;2;0} \right),C\left( {3; - 1; - 2} \right)\). Giả sử \(M\left( {a;b;c} \right)\) thuộc mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 861\) sao cho \(P = 2M{A^2} - 7M{B^2} + 4M{C^2}\) đạt giá trị nhỏ nhất. Giá trị \(T = \left| a \right| + \left| b \right| + \left| c \right|\) bằng
A. \(T = 47\)
B. \(T = 55\)
C. \(T = 51\)
D. \(T = 49\)
Lời giải của giáo viên
ToanVN.com
Giả sử \(I\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thỏa mãn:
\(2\overrightarrow {IA} {\rm{\;}} - 7\overrightarrow {IB} {\rm{\;}} + 4\overrightarrow {IC} {\rm{\;}} = \vec 0{\rm{\;}} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {1 - {x_0}} \right) - 7\left( { - 1 - {x_0}} \right) + 4\left( {3 - {x_0}} \right) = 0}\\{2\left( {1 - {y_0}} \right) - 7\left( {2 - {y_0}} \right) + 4\left( { - 1 - {y_0}} \right) = 0}\\{2\left( { - 1 - {z_0}} \right) - 7\left( { - {z_0}} \right) + 4\left( { - 2 - {z_0}} \right) = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_0} = {\rm{\;}} - 21}\\{{y_0} = 16}\\{{z_0} = 10}\end{array}} \right.\)
\( \Rightarrow I\left( { - 21;16;10} \right) \in \left( S \right)\), (do \({\left( { - 21 - 1} \right)^2} + {16^2} + {\left( {10 + 1} \right)^2} = 861\))
Khi đó,
\(P = 2M{A^2} - 7M{B^2} + 4M{C^2} = 2{\overrightarrow {MA} ^2} - 7{\overrightarrow {MB} ^2} + 4{\overrightarrow {MC} ^2}\)
\( = 2{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IA} } \right)^2} - 7{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IB} } \right)^2} + 4{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IC} } \right)^2}\)
\( = {\rm{\;}} - M{I^2} + 2.\overrightarrow {MI} .\left( {2\overrightarrow {IA} {\rm{\;}} - 7\overrightarrow {IB} {\rm{\;}} + 4\overrightarrow {IC} } \right) + 2I{A^2} - 7I{B^2} + 4I{C^2}\)
\( = {\rm{\;}} - M{I^2} + 2I{A^2} - 7I{B^2} + 4I{C^2}\)
Để \(P = 2M{A^2} - 7M{B^2} + 4M{C^2}\) đạt GTNN thì MI có độ dài lớn nhất
\( \Leftrightarrow MI\) là đường kính \( \Leftrightarrow M\) là điểm đối xứng của \(I\left( { - 21;16;10} \right)\) qua tâm \(T\left( {1;0; - 1} \right)\) của (S)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} - 21 = 2}\\{{y_M} + 16 = 0}\\{{z_M} + 10 = {\rm{\;}} - 2}\end{array}} \right. \Rightarrow M\left( {23; - 16; - 12} \right) \Rightarrow \)\(T = \left| a \right| + \left| b \right| + \left| c \right| = 23 + 16 + 12 = 51\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(3x - 2\) và đồ thị hàm số \(y = {x^2}\) quanh quanh trục Ox.
Trong không gian Oxyz, cho hai điểm \(A\left( {1;1;2} \right),B\left( {2;0;1} \right)\). Mặt phẳng đi qua A và vuông góc với đường thẳng AB có phương trình là:
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 2}}\), biết tiếp tuyến có hệ số góc \(k = {\rm{\;}} - 3\).
Cho tứ diện đều ABCD có cạnh bằng 4. Hình trụ \(\left( T \right)\) có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD. Diện tích xung quanh của \(\left( T \right)\) bằng:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\)\(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là
Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \({d_1}:{\mkern 1mu} {\mkern 1mu} \dfrac{{x - 2}}{2} = \dfrac{{y + 3}}{{ - 1}} = \dfrac{{z - 5}}{{ - 3}}\) và \({d_2}:{\mkern 1mu} {\mkern 1mu} \dfrac{{x + 1}}{{ - 2}} = \dfrac{{y + 3}}{1} = \dfrac{{z - 2}}{3}.\) Khi đó phương trình mặt phẳng \(\left( P \right)\) là:
Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x - 3}}{4} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z + 2}}{3}\). Vectơ nào dưới đây là một vectơ chỉ phương của d?
Hãy tìm số nghiệm \(x\) thuộc \(\left[ {0;100} \right]\) của phương trình sau: \({2^{\cos \pi x - 1}} + \dfrac{1}{2} = \cos \pi x + {\log _4}\left( {3\cos \pi x - 1} \right)\)
Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AC = 2a,{\mkern 1mu} {\mkern 1mu} BD = 4a\). Tính theo \(a\) khoảng cách giữa hai đường thẳng AD và SC.
Tập nghiệm của bất phương trình \({\log _{\dfrac{1}{3}}}\dfrac{{1 - 2x}}{x} > 0\) có dạng \(\left( {a;b} \right)\). Tính \(T = 3a - 2b.\)
Cho ba điểm \(A\left( {2;1; - 1} \right),\)\(B\left( { - 1;0;4} \right),\)\(C\left( {0; - 2; - 1} \right)\). Mặt phẳng đi qua \(A\) và vuông góc với BC có phương trình là
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, \(AB = a;\,\,AD = a\sqrt 3 \). Thể tích khối chóp S.ABCD bằng
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 12{x^2} - 4\) trên đoạn \(\left[ {0;9} \right]\) bằng:
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng \(\sqrt 2 a\). Tam giác SAD cân tại \(S\) và mặt bên \(\left( {SAD} \right)\) vuông góc với mặt phẳng đáy. Biết thể tích khối chóp S.ABCD bằng \(\dfrac{4}{3}{a^3}\). Tính khoảng cách h từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).
Cho hàm số \(y = f\left( x \right).\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới. Hàm số \(g\left( x \right) = f\left( {2 + {e^x}} \right)\)nghịch biến trên khoảng nào trong các khoảng sau đây?