Khối chóp S.ABC có đáy tam giác vuông cân tại \(B\) và \(AB = a.\)\(SA \bot \left( {ABC} \right)\). Góc giữa cạnh bên SB và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Khi đó khoảng cách từ \(A\)đến \(\left( {SBC} \right)\)là:
A. \(\sqrt 3 a\)
B. \(\dfrac{{a\sqrt 3 }}{3}\)
C. \(\dfrac{{a\sqrt 3 }}{2}\)
D. \(\dfrac{{a\sqrt 2 }}{2}\)
Lời giải của giáo viên
ToanVN.com
.jpg)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB{\mkern 1mu} {\mkern 1mu} \left( {gt} \right)}\\{BC \bot SA{\mkern 1mu} {\mkern 1mu} \left( {SA \bot \left( {ABC} \right)} \right)}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {SAB} \right)\).
\( \Rightarrow \left( {SAB} \right) \bot \left( {SBC} \right)\).
Trong \(\left( {SAB} \right)\) kẻ \(AH \bot SB{\mkern 1mu} {\mkern 1mu} \left( {H \in SB} \right)\) ta có:
\(\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \bot \left( {SBC} \right)}\\{\left( {SAB} \right) \cap \left( {SBC} \right) = SB}\\{\left( {SAB} \right) \supset AH \bot SB}\end{array}} \right.\) \( \Rightarrow AH \bot \left( {SBC} \right)\) \( \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AH\).
Vì \(SA \bot \left( {ABC} \right)\) nên AB là hình chiếu của SB lên \(\left( {ABC} \right)\).
\( \Rightarrow \angle \left( {SB;\left( {ABC} \right)} \right) = \angle \left( {SB;AB} \right) = \angle SBA = {60^0}\).
Xét tam giác vuông ABH ta có: \(AH = AB.\sin \angle SBA = a.\sin {60^0} = \dfrac{{a\sqrt 3 }}{2}.\)
Vậy \(d\left( {A;\left( {SBC} \right)} \right) = \dfrac{{a\sqrt 3 }}{2}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài MN nhỏ nhất:
Cho hàm số \(y = \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\). Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SC tạo với đáy một góc \({45^0}\) . Tính khoảng cách từ A đến mặt phẳng (SBD).
Cho hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Số giá trị nguyên của tham số \(m\) để hàm số \(y = {\rm{\;}} - \dfrac{1}{3}{x^3} + m{x^2} - \left( {3 + 2m} \right)x - 2020\) nghịch biến trên \(\mathbb{R}\) là:
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = \dfrac{{a\sqrt 3 }}{2}\), tam giác ABC đều cạnh bằng \(a\) (minh họa như hình dưới).
.jpg)
Góc tạo bởi giữa mặt phẳng\((SBC)\) và \(\left( {ABC} \right)\) bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở \(B\), cạnh \(AC = 2a\). Cạnh SA vuông góc với mặt đáy \((ABC)\), tam giác SAB cân. Tính thể tích hình chóp S.ABC theo \(a\).
Biết rằng hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị là đường cong như hình vẽ bên dưới.
.jpg)
Tính giá trị \(f\left( {3a + 2b + c} \right)\).
Cho hàm số \(y = {\rm{\;}} - {x^4} + 2{x^2} + 3.\) Mệnh đề nào sau đây là đúng?
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?
Hình chóp tam giác đều S.ABC có cạnh đáy là a và cạnh bên tạo với đáy một góc \({45^0}\). Tính theo \(a\) thể tích khối chóp S.ABC.
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3x + 2\) song song với đường thẳng \(y = 9x - 14.\)
Điểm cực tiểu của hàm số \(y = {x^3} - 3x - 2\) là:
Trong các hàm số sau, hàm số nào nghịch biến trên khoảng \(\left( {0;\sqrt 2 } \right)\)?