Lời giải của giáo viên
ToanVN.com
TXD: \(D = R\backslash \left\{ m \right\}\)
Ta có \(y' = \dfrac{{ - m + 1}}{{{{\left( {x - m} \right)}^2}}}\)
Từ yêu cầu đề bài suy ra: \(\left\{ \begin{array}{l}y' < 0\\m \notin \left( { - \infty ;2} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m + 1 < 0\\m \ge 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\m \ge 2\end{array} \right. \Leftrightarrow m \ge 2\)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(a,\,b,\,c\) là các số thực dương thỏa mãn \({a^2} = bc.\) Tính \(S = 2\ln a - \ln b - \ln c.\)
Cho \(a,\,b,\,x\) là các số thực dương khác \(1,\) biết \({\log _a}x = m;\,{\log _b}x = n.\) Tính \({\log _{ab}}x\) theo \(m;\,n.\)
Có bao nhiêu số tự nhiên có \(2\) chữ số và chia hết cho \(13?\)
Hàm số \(y = {x^\pi } + {\left( {x - 1} \right)^e}\) có tập xác định là :
Đồ thị hàm số \(y = {x^4} - {x^2} + 1\) có bao nhiêu điểm cực trị ?
Cho tứ diện đều \(ABCD\) cạnh \(a,\) khi đó khoảng cách giữa \(AB\) và \(CD\) bằng :
Diện tích xung quanh \({S_{xq}}\) của hình nón có bán kính đáy \(R = a\) và đường sinh \(l = a\sqrt 2 \) là :
Tìm tập các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{{x^3}}}{3} - m{x^2} + \left( {{m^2} - m} \right)x + 2019\) có hai điểm cực trị \({x_1},\,{x_2}\) thỏa mãn \({x_1}.{x_2} = 2.\)
Đường cong ở hình bên là đồ thị của hàm số \(y = \dfrac{{ax + b}}{{cx + d}},\) với \(a,\,b,\,c,\,d\) là các số thực. Mệnh đề nào dưới đây là đúng ?
.jpg)
Cắt một hình trụ bằng một mặt phẳng đi qua trục của nó, ta được thiết diện là một hình vuông cạnh \(2a.\) Diện tích xung quanh của hình trụ bằng :
Đồ thị hàm số nào sau đây không có đường tiệm cận ?
Cho hàm số \(f\left( x \right)\) có đồ thị cho bởi hình vẽ. Khẳng định nào sau đây sai ?
Tìm hệ số của \({x^3}\) trong khai triển thành đa thức của biểu thức \({\left( {x - 2} \right)^7}\)
Hàm số \(y = \dfrac{{x + 1}}{{x - 1}}\) nghịch biến trên tập nào dưới đây ?
Số nghiệm của phương trình \({\log _2}\left( {x + 1} \right) + {\log _2}\left( {x - 1} \right) = 3\) là :