Lời giải của giáo viên
ToanVN.com
Ta có: \(y' = 4{x^3} - 2x\) \( = 2x\left( {2{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \dfrac{1}{{\sqrt 2 }}\end{array} \right.\)
Do đó hàm số có \(3\) điểm cực trị.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(a,\,b,\,x\) là các số thực dương khác \(1,\) biết \({\log _a}x = m;\,{\log _b}x = n.\) Tính \({\log _{ab}}x\) theo \(m;\,n.\)
Có bao nhiêu số tự nhiên có \(2\) chữ số và chia hết cho \(13?\)
Cho \(a,\,b,\,c\) là các số thực dương thỏa mãn \({a^2} = bc.\) Tính \(S = 2\ln a - \ln b - \ln c.\)
Hàm số \(y = {x^\pi } + {\left( {x - 1} \right)^e}\) có tập xác định là :
Cho tứ diện đều \(ABCD\) cạnh \(a,\) khi đó khoảng cách giữa \(AB\) và \(CD\) bằng :
Diện tích xung quanh \({S_{xq}}\) của hình nón có bán kính đáy \(R = a\) và đường sinh \(l = a\sqrt 2 \) là :
Tìm tập các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{{x^3}}}{3} - m{x^2} + \left( {{m^2} - m} \right)x + 2019\) có hai điểm cực trị \({x_1},\,{x_2}\) thỏa mãn \({x_1}.{x_2} = 2.\)
Cắt một hình trụ bằng một mặt phẳng đi qua trục của nó, ta được thiết diện là một hình vuông cạnh \(2a.\) Diện tích xung quanh của hình trụ bằng :
Đường cong ở hình bên là đồ thị của hàm số \(y = \dfrac{{ax + b}}{{cx + d}},\) với \(a,\,b,\,c,\,d\) là các số thực. Mệnh đề nào dưới đây là đúng ?
.jpg)
Đồ thị hàm số nào sau đây không có đường tiệm cận ?
Cho hàm số \(f\left( x \right)\) có đồ thị cho bởi hình vẽ. Khẳng định nào sau đây sai ?
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 1\) trên \(\left[ {0;2} \right]\) là
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng ?
Tìm hệ số của \({x^3}\) trong khai triển thành đa thức của biểu thức \({\left( {x - 2} \right)^7}\)
Hàm số \(y = \dfrac{{x + 1}}{{x - 1}}\) nghịch biến trên tập nào dưới đây ?