Lời giải của giáo viên
ToanVN.com
Ta có: \(\mathop {\lim }\limits_{x \to - {3^ + }} \dfrac{{2x - 1}}{{x + 3}} = - \infty \Rightarrow x = - 3\) là một đường tiệm cận đứng.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng \(\sqrt 2 a\) và tam giác SAC đều. Thể tích của khối chóp đã cho bằng bao nhiêu?
Đạo hàm của hàm số \(y = {\left( {3{x^2} - 2x + 1} \right)^{\frac{1}{4}}}\) là:
Điểm cực tiểu của đồ thị hàm số \(y = {x^3} - 6{x^2} + 9x - 2\) là điểm nào sau đây?
Cho hàm số \(y = \dfrac{{x + m}}{{x - 2}}\) thỏa mãn \(\mathop {\min }\limits_{\left[ {3;5} \right]} y = 4\). Mệnh đề nào dưới đây đúng?
Tập xác định của hàm số \(y = {\left( {3x - 1} \right)^{ - 4}}\) là
Cho hàm số y = f(x) có đồ thị như hình vẽ
.png)
Điểm cực đại của đồ thị hàm số đã cho là điểm nào dưới đây?
Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a và \(AA' = \sqrt 6 a\). Tính thể tích của khối lăng trụ đã cho.
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
Với a là số thực dương tùy ý, \({\log _5}{a^6}\) bằng giá trị nào sau đây?
Cho khối hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a và \(AC' = a\sqrt {14} \) . Tính thể tích của khối hộp chữ nhật đã cho.
Tìm tập xác định của hàm số \(y = \ln \left( {2x - 1} \right)\).
Cho a, b, c là các số thực dương và khác 1 thỏa mãn \({\log _a}b = 3,\,{\log _a}c = - 4\). Giá trị của \({\log _a}\left( {{b^3}{c^4}} \right)\) bằng bao nhiêu?
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
.png)
.png)