Cho ngũ giác đều ABCDE, tâm O. Mệnh đề nào sau đây sai?
A. Có 5 vectơ mà điểm đầu là O, điểm cuối là các định của ngũ giác.
B. Có 5 vectơ gốc O có độ dài bằng nhau.
C. Có 4 vectơ mà điểm đầu là A, điểm cuối là các đỉnh của ngũ giác.
D. Các vectơ khác \(\overrightarrow 0 \) có điểm đầu và điểm cuối là các đỉnh, giá là các cạnh của ngũ giác có độ dài bằng nhau.
Lời giải của giáo viên
ToanVN.com
Có 5 vectơ mà điểm đầu là O, điểm cuối là đỉnh của ngũ giác: \(\overrightarrow {OA} ,\overrightarrow {OB} ,\overrightarrow O C,\overrightarrow {OD} ,\overrightarrow {OE} \)
Các vectơ này có độ dài bằng nhau (tính chất của các đa giác đều).
Các vectơ khác \(\overrightarrow {0} \) có điểm đầu và điểm cuối là các đỉnh, giá là các cạnh của ngũ giác có độ dài bằng nhau, bằng cạnh của ngũ giác đều.
Vậy các phương án A, B, D đều đúng, phương án C sai.
Vì có 5 vectơ mà điểm đầu là A, điểm cuối là đỉnh của ngũ giác: \(\overrightarrow {AA} ,\overrightarrow {AB} ,\overrightarrow {AC},\overrightarrow {AD} ,\overrightarrow {AE} \).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho ba điểm M(2; 2), N( - 4; - 4), P(5; 5). Khẳng định nào sau đây đúng?
Cho biết \(\sin \frac{\alpha }{3} = \frac{3}{5}\). Giá trị của \(P = 3{\sin ^2}\frac{\alpha }{3} + 5{\cos ^2}\frac{\alpha }{3}\) bằng bao nhiêu?
Cho hình vuông ABCD cạnh a, tâm O. Tính \(\left| {\overrightarrow {OA} + \overrightarrow {OC} } \right|\)?
Cho tam giác ABC. Vectơ \(\overrightarrow {AB} + \overrightarrow {AC} \) có giá chứa đường thẳng nào sau đây?
Cho hình vuông ABCD cạnh a. Giá trị của \(\overrightarrow {AB} .\overrightarrow {AC} \) là
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow a = (1; - 3),\overrightarrow b = (6,x)\). Hai vectơ đó vuông góc với nhau khi và chỉ khi
Cho ba điểm A, B, C phân biệt sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \). Biết rằng B nằm giữa A và C. Giá trị k thỏa mãn điều kiện nào sau đây?
Tính giá trị biểu thức P = sin30°cos15° + sin150°cos165°.
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Khi đó ABCD là hình bình hành nếu
Cho hình bình hành ABCD. Tập hợp tất cả các điểm M thỏa mãn đẳng thức \(\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} = \overrightarrow {MD} \) là
Cho ba vectơ \(\overrightarrow a = \left( {2;1} \right),\overrightarrow b = \left( {3;4} \right),\overrightarrow c = \left( {7;2} \right)\). Giá trị của k, h để \(\overrightarrow c = k.\overrightarrow a + h.\overrightarrow b \) là
Cho các vectơ \(\overrightarrow a = ( - 1;2),\overrightarrow b = (3;5)\). Tìm các số thực x, y sao cho \(x\overrightarrow a + y\overrightarrow b = \overrightarrow 0 \)
Cho tam giác đều ABC với đường cao AH. Đẳng thức nào sau đây đúng?
Cho tam giác ABC với AB = c, BC = a, CA = b. Gọi CM là đường phân giác trong của góc C (M∈AB). Biểu thị nào sau đây là đúng?
Cho tam giác ABC và điểm M thỏa mãn \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \). Khi đó điểm M là: