Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. SA vuông góc với đáy; góc tạo bởi SC và (SAB) là 300 . Gọi E, F là trung điểm của BC và SD. Tính khoảng cách giữa hai đường thẳng chéo nhau DE và CF.
A. \(\dfrac{{3a\sqrt {13} }}{{13}}\)
B. \(\dfrac{{4a\sqrt {13} }}{{13}}\)
C. \(\dfrac{{a\sqrt {13} }}{{13}}\)
D. \(\dfrac{{2a\sqrt {13} }}{{13}}\)
Lời giải của giáo viên
ToanVN.com

Góc giữa SC và (SAB) là góc BSC
\( \Rightarrow \widehat {BSC} = {30^o}\)
\(\begin{array}{l}SB = CB\cot {30^o} = a\sqrt 3 \\SA = \sqrt {S{B^2} - A{B^2}} = \sqrt {3{a^2} - {a^2}} = a\sqrt 2 \end{array}\)
Gắn hệ trục tọa độ như sau:
Gốc \(O \equiv A\left( {0;0;0} \right);\,Ox \equiv AB;\)
\(\,Oy \equiv AD;\,Oz \equiv AS\)
Tạo độ các điểm được xác định như sau:
\(\begin{array}{l}D\left( {0;a;0} \right);E\left( {a;\dfrac{a}{2};0} \right);C\left( {a;a;0} \right);F\left( {0;\dfrac{a}{2};\dfrac{a}{{\sqrt 2 }}} \right)\\\overrightarrow {DE} \left( {a; - \dfrac{a}{2};0} \right)\\\overrightarrow {CF} \left( { - a; - \dfrac{a}{2};\dfrac{a}{{\sqrt 2 }}} \right)\\\overrightarrow {DC} \left( {a;0;0} \right)\\\left[ {\overrightarrow {DE} ,\overrightarrow {CF} } \right] = \left( { - \dfrac{{{a^2}}}{{2\sqrt 2 }}, - \dfrac{{{a^2}}}{{\sqrt 2 }}; - {a^2}} \right)\\d = \dfrac{{\left| {\overrightarrow {DC} .\left[ {\overrightarrow {DE} ,\overrightarrow {CF} } \right]} \right|}}{{\left| {\left[ {\overrightarrow {DE} ,\overrightarrow {CF} } \right]} \right|}}\\\,\,\,\,\,\,\, = \dfrac{{\left| { - \dfrac{{{a^3}}}{{2\sqrt 2 }}} \right|}}{{\sqrt {{{\left( { - \dfrac{{{a^2}}}{{2\sqrt 2 }}} \right)}^2} + {{\left( { - \dfrac{{{a^2}}}{{\sqrt 2 }}} \right)}^2} + {{\left( { - {a^2}} \right)}^2}} }}\\\,\,\,\,\,\, = \dfrac{{a\sqrt {13} }}{{13}}\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng a
Hàm số \(y = \sqrt {{x^2} + 3x + 5} \). Tính y’(1) được:
Công thức tính thể tích của khối chóp có diện tích đáy B và chiều cao h
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = a. Tính thể tích V của khối chóp đã cho.
Cho khối chóp có 20 cạnh. Số mặt của khối chóp đó bằng bao nhiêu?
Tâm đối xứng của đồ thị hàm số nào sau đây cách gốc tọa độ một khoảng lớn nhất?
Cho hàm số \(f(x) = {x^3} + a{x^2} + bx + c\). Mệnh đề nào sau đây sai?
Rút gọn biểu thức \(P = {{{a^2}b.{{(a{b^{ - 2}})}^{ - 3}}} \over {{{({a^{ - 2}}{b^{ - 1}})}^{ - 2}}}}\)
Cho hàm số \(y = \dfrac{1 }{ 4}{x^4} - 2{x^2} + 3\). Khẳng định nào sau đây đúng?