Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,{\mkern 1mu} {\mkern 1mu} BC = 2AB = 2a.\) Cạnh bên SC vuông góc với đáy, góc giữa SA và đáy bằng \({60^0}.\) Thể tích khối chóp đó bằng:
.jpg)
A. \(\dfrac{{3{a^3}\sqrt 3 }}{2}\)
B. \(\dfrac{{{a^3}\sqrt 5 }}{2}\)
C. \(\dfrac{{{a^3}\sqrt 3 }}{6}\)
D. \(\dfrac{{{a^3}\sqrt 3 }}{2}\)
Lời giải của giáo viên
ToanVN.com
Áp dụng định lý Pitago cho \(\Delta ABC\) vuông tại \(A\) ta có:
\(AC = \sqrt {B{C^2} - A{B^2}} {\rm{\;}} = \sqrt {4{a^2} - {a^2}} {\rm{\;}} = a\sqrt 3 .\)
\( \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.a.a\sqrt 3 {\rm{\;}} = \dfrac{{{a^2}\sqrt 3 }}{2}.\)
Ta có:\(SC \bot \left( {ABC} \right) \Rightarrow SC \bot AC\)
\( \Rightarrow AC\) là hình chiếu của SA trên \(\left( {ABC} \right)\)
\( \Rightarrow \angle \left( {SA,{\mkern 1mu} {\mkern 1mu} \left( {ABC} \right)} \right) = \angle \left( {SA,{\mkern 1mu} {\mkern 1mu} AC} \right) = \angle SAC = {60^0}\)
Xét \(\Delta SAC\) vuông tại \(C\) ta có: \(SC = CA.\tan {60^0} = a\sqrt 3 .\sqrt 3 {\rm{\;}} = 3a.\)
\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SC.{S_{\Delta ABC}} = \dfrac{1}{3}.3a.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 3 }}{2}.\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài MN nhỏ nhất:
Cho hàm số \(y = \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\). Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SC tạo với đáy một góc \({45^0}\) . Tính khoảng cách từ A đến mặt phẳng (SBD).
Cho hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Số giá trị nguyên của tham số \(m\) để hàm số \(y = {\rm{\;}} - \dfrac{1}{3}{x^3} + m{x^2} - \left( {3 + 2m} \right)x - 2020\) nghịch biến trên \(\mathbb{R}\) là:
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = \dfrac{{a\sqrt 3 }}{2}\), tam giác ABC đều cạnh bằng \(a\) (minh họa như hình dưới).
.jpg)
Góc tạo bởi giữa mặt phẳng\((SBC)\) và \(\left( {ABC} \right)\) bằng
Cho hàm số \(y = {\rm{\;}} - {x^4} + 2{x^2} + 3.\) Mệnh đề nào sau đây là đúng?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở \(B\), cạnh \(AC = 2a\). Cạnh SA vuông góc với mặt đáy \((ABC)\), tam giác SAB cân. Tính thể tích hình chóp S.ABC theo \(a\).
Biết rằng hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị là đường cong như hình vẽ bên dưới.
.jpg)
Tính giá trị \(f\left( {3a + 2b + c} \right)\).
Hình chóp tam giác đều S.ABC có cạnh đáy là a và cạnh bên tạo với đáy một góc \({45^0}\). Tính theo \(a\) thể tích khối chóp S.ABC.
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3x + 2\) song song với đường thẳng \(y = 9x - 14.\)
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?
Điểm cực tiểu của hàm số \(y = {x^3} - 3x - 2\) là:
Trong các hàm số sau, hàm số nào nghịch biến trên khoảng \(\left( {0;\sqrt 2 } \right)\)?