Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,{\mkern 1mu} {\mkern 1mu} BC = 2AB = 2a.\) Cạnh bên SC vuông góc với đáy, góc giữa SA và đáy bằng \({60^0}.\) Thể tích khối chóp đó bằng:
.jpg)
A. \(\dfrac{{3{a^3}\sqrt 3 }}{2}\)
B. \(\dfrac{{{a^3}\sqrt 5 }}{2}\)
C. \(\dfrac{{{a^3}\sqrt 3 }}{6}\)
D. \(\dfrac{{{a^3}\sqrt 3 }}{2}\)
Lời giải của giáo viên
ToanVN.com
Áp dụng định lý Pitago cho \(\Delta ABC\) vuông tại \(A\) ta có:
\(AC = \sqrt {B{C^2} - A{B^2}} {\rm{\;}} = \sqrt {4{a^2} - {a^2}} {\rm{\;}} = a\sqrt 3 .\)
\( \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.a.a\sqrt 3 {\rm{\;}} = \dfrac{{{a^2}\sqrt 3 }}{2}.\)
Ta có:\(SC \bot \left( {ABC} \right) \Rightarrow SC \bot AC\)
\( \Rightarrow AC\) là hình chiếu của SA trên \(\left( {ABC} \right)\)
\( \Rightarrow \angle \left( {SA,{\mkern 1mu} {\mkern 1mu} \left( {ABC} \right)} \right) = \angle \left( {SA,{\mkern 1mu} {\mkern 1mu} AC} \right) = \angle SAC = {60^0}\)
Xét \(\Delta SAC\) vuông tại \(C\) ta có: \(SC = CA.\tan {60^0} = a\sqrt 3 .\sqrt 3 {\rm{\;}} = 3a.\)
\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SC.{S_{\Delta ABC}} = \dfrac{1}{3}.3a.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 3 }}{2}.\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài MN nhỏ nhất:
Cho hàm số \(y = \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\). Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SC tạo với đáy một góc \({45^0}\) . Tính khoảng cách từ A đến mặt phẳng (SBD).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở \(B\), cạnh \(AC = 2a\). Cạnh SA vuông góc với mặt đáy \((ABC)\), tam giác SAB cân. Tính thể tích hình chóp S.ABC theo \(a\).
Số giá trị nguyên của tham số \(m\) để hàm số \(y = {\rm{\;}} - \dfrac{1}{3}{x^3} + m{x^2} - \left( {3 + 2m} \right)x - 2020\) nghịch biến trên \(\mathbb{R}\) là:
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = \dfrac{{a\sqrt 3 }}{2}\), tam giác ABC đều cạnh bằng \(a\) (minh họa như hình dưới).
.jpg)
Góc tạo bởi giữa mặt phẳng\((SBC)\) và \(\left( {ABC} \right)\) bằng
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3x + 2\) song song với đường thẳng \(y = 9x - 14.\)
Cho hàm số \(y = {\rm{\;}} - {x^4} + 2{x^2} + 3.\) Mệnh đề nào sau đây là đúng?
Gọi \(A,{\mkern 1mu} {\mkern 1mu} B\) là hai điểm cực trị của đồ thị hàm số \(y = {x^3} - 3x - 2\). Phương trình đường thẳng đi qua hai điểm \(A,{\mkern 1mu} {\mkern 1mu} B\) là:
Biết rằng hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị là đường cong như hình vẽ bên dưới.
.jpg)
Tính giá trị \(f\left( {3a + 2b + c} \right)\).
Hình chóp tam giác đều S.ABC có cạnh đáy là a và cạnh bên tạo với đáy một góc \({45^0}\). Tính theo \(a\) thể tích khối chóp S.ABC.
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?
Tập hợp tất cả các giá trị thực của tham số để đường thẳng \(y = - 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) tại hai điểm phân biệt là: