Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(BA = BC = a.\) Cạnh bên \(SA = 2a\) và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp\(S.ABC\) là :
A. \(a\sqrt 6 .\)
B. \(3a.\)
C. \(\dfrac{{a\sqrt 2 }}{2}.\)
D. \(\dfrac{{a\sqrt 6 }}{2}.\)
Lời giải của giáo viên
ToanVN.com
Gọi \(D\) và \(E\) lần lượt là trung điểm của \(AC,SC\).
Ta có \(DE//SA \Rightarrow DE \bot \left( {ABC} \right)\) mà \(D\) là tâm đường tròn ngoại tiếp tam giác \(ABC\) nên \(ED\) là trục đường trong ngoại tiếp đáy. Do đó: \(EA = EB = EC\)
Lại có tam giác \(SAC\) vuông tại \(A\) có \(E\) là trung điểm cạnh huyền nên \(EA = ES = EC = \dfrac{{SC}}{2}\)
Suy ra \(EA = ES = EC = EB = \dfrac{{SC}}{2}\) hay \(E\) là tâm mặt cầu ngoại tiếp chóp \(S.ABC\) và bán kính mặt cầu là \(\dfrac{{SC}}{2}\)
Xét tam giác \(ABC\) vuông tại \(B\) ta có: \(AC = \sqrt {B{C^2} + B{A^2}} = a\sqrt 2 \)
Xét tam giác \(SAC\) vuông tại \(A\) ta có: \(SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {4{a^2} + 2{a^2}} = a\sqrt 6 \)
Bán kính mặt cầu cần tìm là: \(R = \dfrac{{SC}}{2} = \dfrac{{a\sqrt 6 }}{2}.\)
Chọn D
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số tự nhiên có \(2\) chữ số và chia hết cho \(13?\)
Cho \(a,\,b,\,x\) là các số thực dương khác \(1,\) biết \({\log _a}x = m;\,{\log _b}x = n.\) Tính \({\log _{ab}}x\) theo \(m;\,n.\)
Hàm số \(y = {x^\pi } + {\left( {x - 1} \right)^e}\) có tập xác định là :
Cho \(a,\,b,\,c\) là các số thực dương thỏa mãn \({a^2} = bc.\) Tính \(S = 2\ln a - \ln b - \ln c.\)
Đồ thị hàm số \(y = {x^4} - {x^2} + 1\) có bao nhiêu điểm cực trị ?
Cắt một hình trụ bằng một mặt phẳng đi qua trục của nó, ta được thiết diện là một hình vuông cạnh \(2a.\) Diện tích xung quanh của hình trụ bằng :
Cho tứ diện đều \(ABCD\) cạnh \(a,\) khi đó khoảng cách giữa \(AB\) và \(CD\) bằng :
Diện tích xung quanh \({S_{xq}}\) của hình nón có bán kính đáy \(R = a\) và đường sinh \(l = a\sqrt 2 \) là :
Cho hàm số \(f\left( x \right)\) có đồ thị cho bởi hình vẽ. Khẳng định nào sau đây sai ?
Tìm tập các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{{x^3}}}{3} - m{x^2} + \left( {{m^2} - m} \right)x + 2019\) có hai điểm cực trị \({x_1},\,{x_2}\) thỏa mãn \({x_1}.{x_2} = 2.\)
Gọi \({V_1},\,{V_2}\) lần lượt là thể tích của một khối lập phương và thể tích khối cầu nội tiếp khối lập phương đó. Tỉ số \(\dfrac{{{V_2}}}{{{V_1}}}\) là :
Đồ thị hàm số nào sau đây không có đường tiệm cận ?
Số nghiệm của phương trình \({\log _2}\left( {x + 1} \right) + {\log _2}\left( {x - 1} \right) = 3\) là :
Cho \(m,n,p\) là các số thực dương. Tìm \(x\) biết \(\log x = 3\log m + 2\log n - \log p\)
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng ?