Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a,\) góc giữa mặt bên với mặt đáy bằng \(60^\circ .\) Tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABC.\)
A. \(V = \dfrac{{{a^3}\sqrt 3 }}{{12}}.\)
B. \(V = \dfrac{{{a^3}\sqrt 3 }}{8}.\)
C. \(V = \dfrac{{{a^3}}}{8}.\)
D. \(V = \dfrac{{{a^3}\sqrt 3 }}{{24}}.\)
Lời giải của giáo viên
ToanVN.com
Gọi \(H\) là trọng tâm tam giác \(ABC\) và \(D\) là trung điểm cạnh \(BC\)
Suy ra \(SH \bot \left( {ABC} \right)\)
Ta có: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\AD \bot BC\\SD \bot BC\end{array} \right.\)
Suy ra góc giữa mặt bên \(\left( {SBC} \right)\) và đáy là \(\widehat {SDA} = {60^0}\)
Ta có \(AD = \dfrac{{a\sqrt 3 }}{2} \Rightarrow DH = \dfrac{1}{3}AD = \dfrac{1}{3}\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{6}\)
Xét tam giác \(SHD\) vuông tại \(H\) có \(SH = HD.\tan \widehat {SDH} = \dfrac{{a\sqrt 3 }}{6}.\tan {60^0} = \dfrac{a}{2}\)
Thể tích khối chóp là \(V = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}\dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{24}}\)
Chọn D
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số tự nhiên có \(2\) chữ số và chia hết cho \(13?\)
Cho \(a,\,b,\,x\) là các số thực dương khác \(1,\) biết \({\log _a}x = m;\,{\log _b}x = n.\) Tính \({\log _{ab}}x\) theo \(m;\,n.\)
Hàm số \(y = {x^\pi } + {\left( {x - 1} \right)^e}\) có tập xác định là :
Cho \(a,\,b,\,c\) là các số thực dương thỏa mãn \({a^2} = bc.\) Tính \(S = 2\ln a - \ln b - \ln c.\)
Đồ thị hàm số \(y = {x^4} - {x^2} + 1\) có bao nhiêu điểm cực trị ?
Cắt một hình trụ bằng một mặt phẳng đi qua trục của nó, ta được thiết diện là một hình vuông cạnh \(2a.\) Diện tích xung quanh của hình trụ bằng :
Cho hàm số \(f\left( x \right)\) có đồ thị cho bởi hình vẽ. Khẳng định nào sau đây sai ?
Diện tích xung quanh \({S_{xq}}\) của hình nón có bán kính đáy \(R = a\) và đường sinh \(l = a\sqrt 2 \) là :
Gọi \({V_1},\,{V_2}\) lần lượt là thể tích của một khối lập phương và thể tích khối cầu nội tiếp khối lập phương đó. Tỉ số \(\dfrac{{{V_2}}}{{{V_1}}}\) là :
Tìm tập các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{{x^3}}}{3} - m{x^2} + \left( {{m^2} - m} \right)x + 2019\) có hai điểm cực trị \({x_1},\,{x_2}\) thỏa mãn \({x_1}.{x_2} = 2.\)
Cho tứ diện đều \(ABCD\) cạnh \(a,\) khi đó khoảng cách giữa \(AB\) và \(CD\) bằng :
Số nghiệm của phương trình \({\log _2}\left( {x + 1} \right) + {\log _2}\left( {x - 1} \right) = 3\) là :
Đồ thị hàm số nào sau đây không có đường tiệm cận ?
Cho \(m,n,p\) là các số thực dương. Tìm \(x\) biết \(\log x = 3\log m + 2\log n - \log p\)
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng ?