Câu hỏi Đáp án 3 năm trước 58

Cho hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}.\) Với giá trị nào của \(m\) để hàm số có 2 điểm cực trị A,B sao cho \(AB = \sqrt {20} .\)

A. \(m = 1;{\mkern 1mu} {\mkern 1mu} m = 2\) 

B. \(m = 1\)   

C. \(m = {\rm{\;}} \pm 1\)     

Đáp án chính xác ✅

D. \(m = {\rm{\;}} \pm 2\) 

Lời giải của giáo viên

verified ToanVN.com

+ Điều kiện tồn tại cực trị:

\(y' = 3{x^2} - 6mx = 0\) có 2 nghiệm phân biệt \({x_1};{x_2}\)

\( \Leftrightarrow 3x\left( {x - 2m} \right) = 0\) có 2 nghiệm phân biệt \({x_1};{x_2}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_1} = 0}\\{{x_2} = 2m \ne 0 \Leftrightarrow m \ne 0}\end{array}} \right.\)

+ Khi đó \(\left\{ {\begin{array}{*{20}{l}}{A\left( {0;4{m^3}} \right)}\\{B\left( {2m;0} \right)}\end{array}} \right. \Rightarrow A{B^2} = {\left( {{x_B} - {x_A}} \right)^2} + {\left( {{y_B} - {y_A}} \right)^2} \Leftrightarrow 4{m^2} + 16{m^6} = 20\)

\(\begin{array}{*{20}{l}}{ \Leftrightarrow 4{m^6} + {m^2} - 5 = 0}\\{ \Leftrightarrow {m^2} = 1}\\{ \Leftrightarrow m = {\rm{\;}} \pm 1}\end{array}\)

Chọn C.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(3x - 2\) và đồ thị hàm số \(y = {x^2}\) quanh quanh trục Ox.

Xem lời giải » 3 năm trước 71
Câu 2: Trắc nghiệm

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 2}}\), biết tiếp tuyến có hệ số góc \(k = {\rm{\;}} - 3\).

Xem lời giải » 3 năm trước 68
Câu 3: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( {1;1;2} \right),B\left( {2;0;1} \right)\). Mặt phẳng đi qua A và vuông góc với đường thẳng AB có phương trình là:

Xem lời giải » 3 năm trước 67
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho \(A\left( {1;1; - 1} \right),B\left( { - 1;2;0} \right),C\left( {3; - 1; - 2} \right)\). Giả sử \(M\left( {a;b;c} \right)\) thuộc mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 861\) sao cho \(P = 2M{A^2} - 7M{B^2} + 4M{C^2}\) đạt giá trị nhỏ nhất. Giá trị \(T = \left| a \right| + \left| b \right| + \left| c \right|\) bằng

Xem lời giải » 3 năm trước 66
Câu 5: Trắc nghiệm

Hãy tìm số nghiệm \(x\) thuộc \(\left[ {0;100} \right]\) của phương trình sau: \({2^{\cos \pi x - 1}} + \dfrac{1}{2} = \cos \pi x + {\log _4}\left( {3\cos \pi x - 1} \right)\)

Xem lời giải » 3 năm trước 65
Câu 6: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\)\(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là

Xem lời giải » 3 năm trước 65
Câu 7: Trắc nghiệm

Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \({d_1}:{\mkern 1mu} {\mkern 1mu} \dfrac{{x - 2}}{2} = \dfrac{{y + 3}}{{ - 1}} = \dfrac{{z - 5}}{{ - 3}}\) và \({d_2}:{\mkern 1mu} {\mkern 1mu} \dfrac{{x + 1}}{{ - 2}} = \dfrac{{y + 3}}{1} = \dfrac{{z - 2}}{3}.\) Khi đó phương trình mặt phẳng \(\left( P \right)\) là:

Xem lời giải » 3 năm trước 64
Câu 8: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x - 3}}{4} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z + 2}}{3}\). Vectơ nào dưới đây là một vectơ chỉ phương của d?

Xem lời giải » 3 năm trước 63
Câu 9: Trắc nghiệm

Cho tứ diện đều ABCD có cạnh bằng 4. Hình trụ \(\left( T \right)\) có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD. Diện tích xung quanh của \(\left( T \right)\) bằng:

Xem lời giải » 3 năm trước 63
Câu 10: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 12{x^2} - 4\) trên đoạn \(\left[ {0;9} \right]\) bằng:

Xem lời giải » 3 năm trước 62
Câu 11: Trắc nghiệm

Tập nghiệm của bất phương trình \({\log _{\dfrac{1}{3}}}\dfrac{{1 - 2x}}{x} > 0\) có dạng \(\left( {a;b} \right)\). Tính \(T = 3a - 2b.\)

Xem lời giải » 3 năm trước 62
Câu 12: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, \(AB = a;\,\,AD = a\sqrt 3 \). Thể tích khối chóp S.ABCD bằng

Xem lời giải » 3 năm trước 60
Câu 13: Trắc nghiệm

Họ nguyên hàm của hàm số \(y = x\sin x\) là

Xem lời giải » 3 năm trước 59
Câu 14: Trắc nghiệm

Cho ba điểm \(A\left( {2;1; - 1} \right),\)\(B\left( { - 1;0;4} \right),\)\(C\left( {0; - 2; - 1} \right)\). Mặt phẳng đi qua \(A\) và vuông góc với BC có phương trình là

Xem lời giải » 3 năm trước 59
Câu 15: Trắc nghiệm

Cho khối lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a và mặt phăng (DBC’) hợp với mặt đáy (ABCD) một góc \({60^0}\). Tính theo a thể tích của khối lăng trụ ABCD.A’B’C’D’.

Xem lời giải » 3 năm trước 59

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »