Lời giải của giáo viên
ToanVN.com
Ta có:
\(\begin{array}{l}{\left[ {f\left( x \right)} \right]^2} + f\left( x \right) = 0\\ \Leftrightarrow f\left( x \right)\left[ {f\left( x \right) + 1} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\f\left( x \right) = - 1\end{array} \right.\end{array}\)
Từ đồ thị hàm số \(y = f\left( x \right)\) ta thấy:
+) Đồ thị cắt trục hoành tại \(3\) điểm phân biệt nên phương trình \(f\left( x \right) = 0\) có ba nghiệm phân biệt
+) Đường thẳng \(y = - 1\) cắt đồ thị hàm số tại 2 điểm phân biệt nên phương trình \(f\left( x \right) = - 1\) có hai nghiệm phân biệt. Và các nghiệm này không trùng với 3 nghiệm ở trên nên phương trình \({\left[ {f\left( x \right)} \right]^2} + f\left( x \right) = 0\) có năm nghiệm phân biệt.
Chọn C
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(a,\,b,\,c\) là các số thực dương thỏa mãn \({a^2} = bc.\) Tính \(S = 2\ln a - \ln b - \ln c.\)
Cho \(a,\,b,\,x\) là các số thực dương khác \(1,\) biết \({\log _a}x = m;\,{\log _b}x = n.\) Tính \({\log _{ab}}x\) theo \(m;\,n.\)
Có bao nhiêu số tự nhiên có \(2\) chữ số và chia hết cho \(13?\)
Hàm số \(y = {x^\pi } + {\left( {x - 1} \right)^e}\) có tập xác định là :
Đồ thị hàm số \(y = {x^4} - {x^2} + 1\) có bao nhiêu điểm cực trị ?
Cho tứ diện đều \(ABCD\) cạnh \(a,\) khi đó khoảng cách giữa \(AB\) và \(CD\) bằng :
Diện tích xung quanh \({S_{xq}}\) của hình nón có bán kính đáy \(R = a\) và đường sinh \(l = a\sqrt 2 \) là :
Tìm tập các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{{x^3}}}{3} - m{x^2} + \left( {{m^2} - m} \right)x + 2019\) có hai điểm cực trị \({x_1},\,{x_2}\) thỏa mãn \({x_1}.{x_2} = 2.\)
Cắt một hình trụ bằng một mặt phẳng đi qua trục của nó, ta được thiết diện là một hình vuông cạnh \(2a.\) Diện tích xung quanh của hình trụ bằng :
Đường cong ở hình bên là đồ thị của hàm số \(y = \dfrac{{ax + b}}{{cx + d}},\) với \(a,\,b,\,c,\,d\) là các số thực. Mệnh đề nào dưới đây là đúng ?
.jpg)
Đồ thị hàm số nào sau đây không có đường tiệm cận ?
Cho hàm số \(f\left( x \right)\) có đồ thị cho bởi hình vẽ. Khẳng định nào sau đây sai ?
Tìm hệ số của \({x^3}\) trong khai triển thành đa thức của biểu thức \({\left( {x - 2} \right)^7}\)
Số nghiệm của phương trình \({\log _2}\left( {x + 1} \right) + {\log _2}\left( {x - 1} \right) = 3\) là :
Hàm số \(y = \dfrac{{x + 1}}{{x - 1}}\) nghịch biến trên tập nào dưới đây ?