Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ sau:
.png)
Hàm số nghịch biến trên khoảng nào dưới đây?
A. \(\left( {0;1} \right)\)
B. \(\left( { - 1;0} \right)\)
C. \(\left( { - 1;1} \right)\)
D. \(\left( { - \infty ;1} \right)\)
Lời giải của giáo viên
ToanVN.com
Từ đồ thị hàm số đã cho ta thấy hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\)
Chọn A
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên
.png)
Hàm số đồng biến trên khoảng nào sau đây?
Cho \(a\) là số thực dương khác 1 và \(b\) là số thực khác 0. Mệnh đề nào sau đây sai?
Gọi \(l,h,R\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón. Diện tích toàn phần \({S_{tp}}\) của hình nón là:
Cho phương trình \(\log _{\sqrt 2 }^2x - 3{\log _2}2x + 1 = 0\). Nếu đặt \(t = {\log _2}x\) thì được phương trình
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BC = 3a,AC = 5a,\) cạnh bên \(A'A = 6a\). Thể tích khối lăng trụ bằng
Hình chóp tam giác đều có bao nhiêu mặt phẳng đối xứng?
Cho \(a\) là số thực dương tùy ý, biểu thức \({a^{\dfrac{2}{3}}}.{a^{\dfrac{2}{5}}}\) dưới dạng lũy thừa với số mũ hữu tỉ là
Một hình nón có đường kính đường tròn đáy bằng \(10cm\) và chiều dài đường sinh bằng \(15cm\). Thể tích của khối nón bằng
Đồ thị hàm số \(y = \left( {x - 1} \right)\left( {{x^2} - 4x + 4} \right)\) có bao nhiêu điểm chung với trục \(Ox?\)
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
.png)
Số điểm cực trị của hàm số bằng
Gọi \(l,h,R\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ. Diện tích xung quanh của hình trụ là
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 2{x^3} + 3{x^2} - 12x + 2\) trên đoạn \(\left[ { - 1;2} \right]\). Tỉ số \(\dfrac{M}{m}\) bằng
Cho \(a\) là số thực dương khác 1. Giá trị của biểu thức \(P = {\log _{{a^2}}}\sqrt[4]{{{a^3}}}\)
Đạo hàm của hàm số \(y = {\log _2}\left( {{x^2} - 2x + 3} \right)\) là