Cho \(\Delta ABC\) đều, có O là trọng tâm. Em hãy chọn phát biểu sai trong các phát biểu sau:
A. Trọng tâm và trực tâm của \(\Delta ABC\) trùng nhau.
B. AO không phải là tia phân giác của \(\widehat{BAC}\).
C. BO là đường cao của \(\Delta ABC\).
D. CO là đường trung tuyến của \(\Delta ABC\).
Lời giải của giáo viên
ToanVN.com
Vì O là trọng tâm của \(\Delta ABC\) \(\Rightarrow \) AO, BO, CO là 3 đường trung tuyến của \(\Delta ABC\).
Mặt khác, \(\Delta ABC\) là tam giác đều nên AO, BO, CO cũng là đường cao của \(\Delta ABC\). Do đó, O là trực tâm của \(\Delta ABC\). Phát biểu của đáp án A, C, D đúng.
Loại đáp án A, C, D.
Vì \(\Delta ABC\) là tam giác đều nên AO vừa là đường trung tuyến vừa là đường phân giác của \(\widehat{BAC}\). Phát biểu của đáp án B sai.
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn thẳng có độ dài cho sau đây không thể là ba cạnh của một tam giác.
Tam giác cân có góc ở đỉnh là \({{80}^{o}}\). Số đo góc ở đáy là:
Cho đa thức sau: \(f(x)=2{{x}^{2}}+\,12x+10\). Trong các số sau, số nào là nghiệm của đa thức đã cho:
Cho \(\Delta ABC\) có cạnh \(AB=1cm\) và cạnh \(BC=4cm\). Tính độ dài cạnh AC biết độ dài cạnh AC là một số nguyên.
Cho \(\Delta ABC\) cân ở A. Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của\(\widehat{ACB}\) . Tính các góc của \(\Delta ABC\).
Cho \(\Delta ABC\) cân tại A, các đường trung trực của AB, AC cắt nhau tại O. Lấy \(D\in AB,E\in AC\) sao cho AD = AE. Em hãy chọn phát biểu đúng trong các phát biểu sau:
Cho \(\Delta MNP\) có \(\widehat{M}={{40}^{0}}\), các đường phân giác NH và PK của \(\widehat{N}\) và \(\widehat{P}\) cắt nhau tại I. Khi đó \(\widehat{NIP}\) bằng:
Cho \(\Delta ABC\) có \(AC>BC>AB\). Trong các khẳng định sau, câu nào đúng?
Biểu thức nào sau đây không phải là biểu thức đại số?
Cho đa thức \(A=x{{y}^{6}}+\frac{2}{3}x{{y}^{2}}z-15{{x}^{3}}yz-x{{y}^{6}}+x{{y}^{2}}z\). Bậc của đa thức A là:
Cho \(\Delta ABC\), hai đường cao AM và BN cắt nhau tại H. Em hãy chọn phát biểu đúng:
Cho \(\Delta ABC\) cân tại A, có \(\widehat{A}={{40}^{0}}\), đường trung trực của AB cắt BC ở D. Tính \(\widehat{CAD}\)
Cho các giá trị của x là \(0;-1;1;2;-2\). Giá trị nào của x là nghiệm của đã thức \(P(x)={{x}^{2}}+x-2\)?