Câu hỏi Đáp án 3 năm trước 50

Biết rằng phương trình \(\sqrt {2 - x}  + \sqrt {2 + x}  - \sqrt {4 - {x^2}}  = m\) có nghiệm khi \(m \in \left[ {a;b} \right]\) với \(a,b \in \mathbb{R}\). Khi đó giá trị của \(T = (a + 2)\sqrt 2  + b\) là

A. \(T = 3\sqrt 2  + 2\)  

B. \(T = 6\).

Đáp án chính xác ✅

C. \(T = 8\).  

D. \(T = 0\).

Lời giải của giáo viên

verified ToanVN.com

Xét hàm số \(y = \sqrt {2 - x}  + \sqrt {2 + x}  - \sqrt {4 - {x^2}} \) trên \(\left[ { - 2;2} \right]\), ta có:

\(y' =  - \dfrac{1}{{\sqrt {2 - x} }} + \dfrac{1}{{\sqrt {2 + x} }} - \dfrac{x}{{\sqrt {4 - {x^2}} }} = \dfrac{{\sqrt {2 - x}  - \sqrt {2 + x}  - x}}{{\sqrt {4 - {x^2}} }}\)

\(y' = 0 \Leftrightarrow \dfrac{{\sqrt {2 - x}  - \sqrt {2 + x}  - x}}{{\sqrt {4 - {x^2}} }} = 0 \Leftrightarrow \sqrt {2 - x}  - \sqrt {2 + x}  - x = 0,(x \ne  \pm 2) \Leftrightarrow \sqrt {2 - x}  - \sqrt {2 + x}  = x(1)\)

 

Nếu \(x < 0\) thì \(\sqrt {2 - x}  > \sqrt {2 + x}  \Rightarrow \sqrt {2 - x}  - \sqrt {2 + x}  > 0 \Rightarrow (1)\)vô nghiệm.

Nếu \(x > 0\) thì \(\sqrt {2 - x}  < \sqrt {2 + x}  \Rightarrow \sqrt {2 - x}  - \sqrt {2 + x}  < 0 \Rightarrow (1)\)vô nghiệm.

Thay \(x = 0\) vào (1), ta thấy \(x = 0\) là nghiệm và đồng thời là nghiệm duy nhất của (1).

Ta có bảng biến thiên như sau:

 

Để phương trình \(\sqrt {2 - x}  + \sqrt {2 + x}  - \sqrt {4 - {x^2}}  = m\) có nghiệm thì \(m \in \left[ {2\sqrt 2 {\rm{\;}} - 2;2} \right]\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2\sqrt 2 {\rm{\;}} - 2}\\{b = 2}\end{array}} \right. \Rightarrow T = (a + 2)\sqrt 2 {\rm{\;}} + b = (2\sqrt 2 {\rm{\;}} - 2 + 2).\sqrt 2 {\rm{\;}} + 2 = 6\)

Chọn B.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài MN nhỏ nhất:

Xem lời giải » 3 năm trước 71
Câu 2: Trắc nghiệm

Cho hàm số \(y = \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\). Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

Xem lời giải » 3 năm trước 64
Câu 3: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SC tạo với đáy một góc \({45^0}\) . Tính khoảng cách từ A đến mặt phẳng (SBD).

Xem lời giải » 3 năm trước 61
Câu 4: Trắc nghiệm

Cho hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?

Xem lời giải » 3 năm trước 59
Câu 5: Trắc nghiệm

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = \dfrac{{a\sqrt 3 }}{2}\), tam giác ABC đều cạnh bằng \(a\) (minh họa như hình dưới).

Góc  tạo bởi giữa mặt phẳng\((SBC)\) và \(\left( {ABC} \right)\) bằng

Xem lời giải » 3 năm trước 58
Câu 6: Trắc nghiệm

Số giá trị nguyên của tham số \(m\) để hàm số \(y = {\rm{\;}} - \dfrac{1}{3}{x^3} + m{x^2} - \left( {3 + 2m} \right)x - 2020\) nghịch biến trên \(\mathbb{R}\) là:

Xem lời giải » 3 năm trước 58
Câu 7: Trắc nghiệm

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở \(B\), cạnh \(AC = 2a\). Cạnh SA vuông góc với mặt đáy \((ABC)\), tam giác SAB cân. Tính thể tích hình chóp S.ABC theo \(a\).

Xem lời giải » 3 năm trước 58
Câu 8: Trắc nghiệm

Cho hàm số \(y = {\rm{\;}} - {x^4} + 2{x^2} + 3.\) Mệnh đề nào sau đây là đúng?

Xem lời giải » 3 năm trước 57
Câu 9: Trắc nghiệm

Khối lập phương có bao nhiêu mặt đối xứng ?

Xem lời giải » 3 năm trước 57
Câu 10: Trắc nghiệm

Biết rằng hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị là đường cong như hình vẽ bên dưới.

Tính giá trị \(f\left( {3a + 2b + c} \right)\).

Xem lời giải » 3 năm trước 56
Câu 11: Trắc nghiệm

Hình chóp tam giác đều S.ABC có cạnh đáy là a và cạnh bên tạo với đáy một góc \({45^0}\). Tính theo \(a\) thể tích khối chóp S.ABC.

Xem lời giải » 3 năm trước 56
Câu 12: Trắc nghiệm

Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3x + 2\) song song với đường thẳng \(y = 9x - 14.\)

Xem lời giải » 3 năm trước 56
Câu 13: Trắc nghiệm

Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?

Xem lời giải » 3 năm trước 56
Câu 14: Trắc nghiệm

Điểm cực tiểu của hàm số \(y = {x^3} - 3x - 2\) là:

Xem lời giải » 3 năm trước 54
Câu 15: Trắc nghiệm

Gọi \(A,{\mkern 1mu} {\mkern 1mu} B\) là hai điểm cực trị của đồ thị hàm số \(y = {x^3} - 3x - 2\). Phương trình đường thẳng đi qua hai điểm \(A,{\mkern 1mu} {\mkern 1mu} B\) là:

Xem lời giải » 3 năm trước 53

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »