Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l}\int\limits_1^2 {\dfrac{{\ln x}}{{{x^2}}}dx} = - \int\limits_1^2 {\ln xd\left( {\dfrac{1}{x}} \right)} = - \left. {\dfrac{{\ln x}}{x}} \right|_1^2 + \int\limits_1^2 {\dfrac{1}{x}d\left( {\ln x} \right)} \\ = - \left. {\dfrac{{\ln x}}{x}} \right|_1^2 + \int\limits_1^2 {\dfrac{1}{{{x^2}}}dx} = - \left. {\dfrac{{\ln x}}{x}} \right|_1^2\left. { - \dfrac{1}{x}} \right|_1^2\\ = - \dfrac{{\ln 2}}{2} + 0 - \dfrac{1}{2} + 1 = - \dfrac{1}{2}\ln 2 + \dfrac{1}{2}\\ \Rightarrow a = - \dfrac{1}{2};\,\,b = 1;\,\,c = 2 \Rightarrow 2a + 3b + c = 4.\end{array}\)
Chọn: B
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC , biết \(A\left( {1;1;1} \right),B\left( {5;1; - 2} \right),C\left( {7;9;1} \right)\). Tính độ dài đường phân giác trong AD của góc A.
Tìm độ dài đường kính của mặt cầu \(\left( S \right)\) có phương trình \({x^2} + {y^2} + {z^2} - 2y + 4z + 2 = 0\).
Tìm phần ảo của số phức z thỏa mãn \(z + 2\overline z = {\left( {2 - i} \right)^3}\left( {1 - i} \right)\).
Thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(d:y = x\) xoay quanh trục Ox bằng:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sin 3x\).
Tính diện tích hình phẳng giới hạn bởi \(\left( P \right):y = {x^2} - 4x + 3\) và trục Ox.
Trong không gian với hệ tọa độ \(\left( {O;\overrightarrow i ,\overrightarrow j ,\overrightarrow k } \right)\) cho vectơ \(\overrightarrow {OM} = \overrightarrow j - \overrightarrow k \). Tìm tọa độ điểm M.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0\) và điểm \(M\left( {1; - 2;13} \right)\). Tính khoảng cách d từ M đến (P).
Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow u = \left( { - 2;3;0} \right),\overrightarrow v = \left( {2; - 2;1} \right)\). Độ dài của vectơ \(\overrightarrow {\bf{w}} = \overrightarrow u - 2\overrightarrow v \) là
Cho số phức \(z = - 4 - 6i\). Gọi M là điểm biểu diễn số phức \(\overline z \). Tung độ của điểm M là:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( \alpha \right):2x - 3y - z - 1 = 0\). Điểm nào dưới đây không thuộc mặt phẳng \(\left( \alpha \right)\)?
Cho số phức \(z = 7 - i\sqrt 5 \). Phần thực và phần ảo của số phức \(\overline z \) lần lượt là
Cho \(\int\limits_0^1 {f\left( {4x} \right)} dx = 4\). Tính \(I = \int\limits_0^4 {f\left( x \right)} dx\).