Đề thi HK1 môn Toán 7 năm 2020 - Trường THCS Nghĩa Lâm

Đề thi HK1 môn Toán 7 năm 2020 - Trường THCS Nghĩa Lâm

  • Hocon247

  • 30 câu hỏi

  • 60 phút

  • 42 lượt thi

  • Dễ

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 307724

Tập hợp số hữu tỉ được kí hiệu là?

Xem đáp án

Tập hợp các số hữu tỉ được kí hiệu là Q ( x là số hữu tỉ thì ghi là x ∈ Q )

Chọn đáp án C.

Câu 2: Trắc nghiệm ID: 307725

Số hữu tỉ là số được viết dưới dạng phân số a/b với:

Xem đáp án

Số hữu tỉ là số được viết dưới dạng phân số a/b với: a, b ∈ Z, b ≠ 0

Chọn đáp án B

Câu 3: Trắc nghiệm ID: 307726

Trong các khẳng định sau, khẳng định sai là:

Xem đáp án

Ta có:

Mọi số tự nhiên đều là số nguyên và số hữu tỉ nên đáp án A và C đúng

N* là tập hợp các số tự nhiên khác 0 nên nó là tập con của tập các số tự nhiên. Đáp án B đúng

Mọi số nguyên đều là số hữu tỉ, tuy nhiên một số hữu tỉ chưa chắc đã là số nguyên.

Chẳng hạn: 1/2 là số hữu tỉ nhưng không phải số nguyên. Đáp án D sai

Chọn đáp án D

Câu 4: Trắc nghiệm ID: 307727

Có bao nhiêu số hữu tỉ thỏa mãn có mẫu bằng 7, lớn hơn \(\frac{{ - 5}}{9}\) và nhỏ hơn \(\frac{{ - 2}}{9}\)

Xem đáp án

Gọi số hữu tỉ cần tìm có dạng \(\frac{x}{7}\), x là số nguyên

Theo đề bài ta có:

\(\begin{array}{l} \frac{{ - 5}}{9} < \frac{x}{7} < \frac{{ - 2}}{9} \Leftrightarrow \frac{{ - 35}}{{63}} < \frac{{9x}}{{63}} < \frac{{ - 14}}{{63}}\\ \Rightarrow - 35 < 9x < - 14 \Leftrightarrow \frac{{ - 35}}{9} < x < \frac{{ - 14}}{9} \end{array}\)

Vì x là số nguyên nên x = -3; -2

Nên có hai số thỏa mãn yêu cầu đề bài là:

\(\frac{{ - 3}}{7};\frac{{ - 2}}{7}\)

Câu 5: Trắc nghiệm ID: 307728

Cho các số hữu tỉ: \(\frac{{ - 2}}{3};\frac{{ - 3}}{5};\frac{2}{3};\frac{5}{4};0\). Hãy sắp xếp các số hửu tỉ trên theo thứ tự tăng dần:

Xem đáp án
\(\begin{array}{l} \frac{{ - 2}}{3} = \frac{{ - 10}}{{15}};\frac{{ - 3}}{5} = \frac{{ - 9}}{{15}}\\ - 10 < - 9 \Rightarrow \frac{{ - 10}}{{15}} < \frac{{ - 9}}{{15}} < 0 \Rightarrow \frac{2}{3} < \frac{{ - 3}}{5} < 0 \end{array}\)

\(\frac{2}{3} < 1;\frac{5}{4} > 1 \Rightarrow \frac{2}{3} < \frac{5}{4} \Rightarrow 0 < \frac{2}{3} < \frac{5}{4}\)

Vậy dãy số sắp xếp sắp xếp thep thứ tự tăng dần là:

\(\frac{{ - 2}}{3};\frac{{ - 3}}{5};0;\frac{2}{3};\frac{5}{4}\)

Chọn đáp án D

Câu 6: Trắc nghiệm ID: 307729

Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án

\(\frac{0}{2}=0\) không là số hữu tỉ dương, cũng không là số hữu tỉ âm => Đáp án A sai

\(\frac{-2}{-7}\) là số hữu tỉ dương => Đáp án B đúng

\(\frac{3}{0}\) không là số hữu tỉ vì mẫu bằng 0 => Đáp án C sai

\(\frac{5}{0}\) là số hữu tỉ => Đáp án D sai

Câu 7: Trắc nghiệm ID: 307730

Cho số hữu tỉ \(x = \frac{{a - 3}}{2}\). Với giá trị nào của a thì x là số nguyên dương?

Xem đáp án

Để số hữu tỉ \(x = \frac{{a - 3}}{2}\) là số nguyên dương thì (a - 3) > 0 và (a - 3) chia hết cho 2.

Giả sử a - 3 = 2k (k∈ N*) suy ra a = 3 + 2k (k∈ N*)

Vậy chọn D.

Câu 8: Trắc nghiệm ID: 307731

Cho các phân số sau: \(\frac{1}{2};\frac{{12}}{{28}};\frac{6}{{21}};\frac{{ - 30}}{{ - 70}};\frac{{15}}{{ - 35}};\frac{7}{3};\frac{{ - 3}}{7}\)

Có bao nhiêu phân số biểu diễn số hữu tỉ \(\frac37\)?

Xem đáp án

\(\begin{array}{l} \frac{1}{2} \ne \frac{3}{7}\\ \frac{{12}}{{28}} = \frac{{12:4}}{{28:4}} = \frac{3}{7}\\ \frac{6}{{21}} = \frac{{6:3}}{{21:3}} = \frac{2}{7} \ne \frac{3}{7}\\ \frac{{ - 30}}{{ - 70}} = \frac{{ - 30:( - 10)}}{{ - 70:( - 10)}} = \frac{3}{7}\\ \frac{{15}}{{ - 35}} = \frac{{15:5}}{{ - 35:5}} = \frac{3}{{ - 7}} \ne \frac{3}{7}\\ \frac{7}{3} \ne \frac{3}{7}\\ \frac{{ - 3}}{7} \ne \frac{3}{7} \end{array}\)

Vậy chọn đáp án B

Câu 9: Trắc nghiệm ID: 307732

Số \(\frac{-5}{12}\) là kết quả của phép tính nào dưới đây?

Xem đáp án

\(\begin{array}{l} \frac{{ - 1}}{6} + \frac{{ - 3}}{{12}} = \frac{{ - 2}}{{12}} + \frac{{ - 3}}{{12}} = \frac{{ - 2 - 3}}{{12}} = \frac{{ - 5}}{{12}}\\ 1 - \frac{{ - 17}}{{12}} = \frac{{12 + 17}}{{12}} = \frac{{29}}{{12}}\\ \frac{{ - 7}}{{12}} + 1 = \frac{{ - 7 + 12}}{{12}} = \frac{5}{{12}}\\ \frac{{ - 1}}{6} - \frac{{ - 3}}{{12}} = \frac{{ - 2}}{{12}} - \frac{{ - 3}}{{12}} = \frac{{ - 2 + 3}}{{12}} = \frac{1}{{12}} \end{array}\)

Vậy chọn đáp án A

Câu 10: Trắc nghiệm ID: 307733

Chọn kết luận đúng nhất về kết quả của phép tính \(\frac{{ - 2}}{{13}} + \frac{{ - 11}}{{26}}\) là:

Xem đáp án

Ta có: \(\frac{{ - 2}}{{13}} + \frac{{ - 11}}{{26}} = \frac{{ - 4}}{{26}} + \frac{{ - 11}}{{26}} = \frac{{ - 15}}{{26}}\)

Là số hữu tỉ âm

Chọn đáp án C

Câu 11: Trắc nghiệm ID: 307734

Tìm x biết (x + 2)(x - 1) < 0.

Xem đáp án

Tích của hai số nhỏ hơn 0 khi và chỉ khi hai số đó trái dấu

Mà x + 2 > x - 1 => x - 1 < 0 và x + 2 > 0

+) x + 2 > 0

    x > -2

+) x - 1 < 0

    x < 1

=> -2 < x < 1

Chọn đáp án B

Câu 12: Trắc nghiệm ID: 307735

Gọi x0 là giá trị thỏa mãn \(\frac{5}{7}:x - \frac{2}{5} = \frac{1}{3}\). Chọn câu đúng?

Xem đáp án

\(\begin{array}{l} \frac{5}{7}:x - \frac{2}{5} = \frac{1}{3}\\ \frac{5}{7}:x = \frac{1}{3} + \frac{2}{5}\\ \frac{5}{7}:x = \frac{{11}}{{15}}\\ x = \frac{5}{7}:\frac{{11}}{{15}}\\ x = \frac{5}{7}.\frac{{15}}{{11}}\\ x = \frac{{75}}{{77}} \end{array}\)

Vì 75 < 77 nên \(\frac{75}{77}<1\)

Vậy chọn đáp án A.

Câu 13: Trắc nghiệm ID: 307736

Với giá trị nào dưới đây của m thì số hữu tỉ \(x = \frac{{m + 1}}{{2100}}\) là số hữu tỉ dương?

Xem đáp án

x là số hữu tỉ dương khi m + 1 > 0 (vì 2100 > 0)

⇒ m > -1

Vì trong 4 đáp án đã cho chỉ có 2 > - 1, nên B đúng.

Vậy chọn đáp án B.

Câu 14: Trắc nghiệm ID: 307737

 Viết biểu thức \({3^4}{.3^5}:\frac{1}{{27}}\) dưới dạng lũy thừa của một số ta được kết quả nào dưới đây?

Xem đáp án

\({3^4}{.3^5}:\frac{1}{{27}} = {3^{4 + 5}}:\frac{1}{{{3^3}}} = {3^9}{.3^3} = {3^{9 + 3}} = {3^{12}}\)

Vậy chọn đáp án C.

Câu 15: Trắc nghiệm ID: 307738

Cho hai số a = 9920 và b = 999910. Khẳng định nào sau đây là đúng

Xem đáp án

Ta có:

a = 9920 = 992.10 = (992)10 = (99.99)10 = 980110

b = 999910

Vì 0 < 9801 < 9999

Suy ra 980110 < 999910 (hai lũy thừa cùng cơ số)

Do đó 9920 < 999910

Nên a < b

Vậy chọn đáp án B

Câu 16: Trắc nghiệm ID: 307739

Cho 20n : 5n = 4. Tìm n.

Xem đáp án

20 n : 5 n = 4

(20 : 5)n = 4

n = 4

n = 1

Vậy chọn D.

Câu 17: Trắc nghiệm ID: 307740

Cho x; y; z là ba số dương phân biệt. Tìm tỉ số \(\frac{x}{y}\) biết \(\frac{y}{{x - z}} = \frac{{x + y}}{z} = \frac{x}{y}\).

Xem đáp án

\(\frac{y}{{x - z}} = \frac{{x + y}}{z} = \frac{x}{y} = \frac{{y + x + y + x}}{{x - z + z + y}} = \frac{{2x + 2y}}{{x + y}} = 2\)

Vậy chọn đáp án A.

Câu 18: Trắc nghiệm ID: 307741

Cho bốn số m, n, 5, 7 với m, n ≠ 0 và 5m = 7n, một tỉ lệ thức đúng được thiết lập từ bốn số trên là?

Xem đáp án

Từ đẳng thức: 5m = 7n, ta có tỉ lệ thức \(\frac{5}{7} = \frac{n}{m}\)

Vậy chọn đáp án D.

Câu 19: Trắc nghiệm ID: 307742

Hai lớp 6A và 6B đi lao động trồng cây. Biết rằng tỉ số giữa số cây trồng được của lớp 6A và lớp 6B là 0,875 và lớp 6B trồng nhiều hơn lớp 6A là 23 cây. Tính số cây mỗi lớp đã trồng

Xem đáp án

Gọi số cây lớp 6A và 6B trồng được lần lượt là x, y (cây)

Theo đề bài ta có: y – x = 23

Và 

\(\begin{array}{l} x:y = 0,875 = 7:8\\ \Rightarrow \frac{x}{7} = \frac{y}{8} = \frac{{y - x}}{{8 - 7}} = \frac{{23}}{1}23\\ \Rightarrow \left\{ \begin{array}{l} x = 7.23 = 161\\ y = 8.23 = 184 \end{array} \right. \end{array}\)

 

Chọn đáp án D

Câu 20: Trắc nghiệm ID: 307743

Cho 7x = 4y và y - x = 24. Tìm giá trị x, y?

Xem đáp án

Ta có: 

\(\begin{array}{l} 7x = 4y \Rightarrow \frac{y}{7} = \frac{x}{4} = \frac{{y - x}}{{7 - 4}} = \frac{{24}}{3} = 8\\ \Rightarrow \left\{ \begin{array}{l} x = 8.4 = 32\\ y = 8.7 = 56 \end{array} \right. \end{array}\)

Chọn đáp án B.

Câu 21: Trắc nghiệm ID: 307744

Hai đường thẳng xx' và yy' cắt nhau tại điểm O tạo thành 4 góc. Tổng số các cặp góc đối đỉnh (không kể góc bẹt) là:

Xem đáp án

Theo định nghĩa, hai đường thẳng cắt nhau tạo thành 2 cặp góc đối đỉnh.

Chọn đáp án D.

Câu 22: Trắc nghiệm ID: 307745

Đường trung trực của đoạn thẳng AB là:

Xem đáp án

Đường trung trực của đoạn thẳng AB là đường thẳng vuông góc với AB tại trung điểm của AB.

Chọn đáp án C.

Câu 23: Trắc nghiệm ID: 307746

Tiên đề Ơclít được phát biểu:

“Qua một điểm M nằm ngoài đường thẳng a ....”

Xem đáp án

Tiên đề Ơclít được phát biểu:

“Qua một điểm M nằm ngoài đường thẳng a có duy nhất một đường thẳng đi qua M và song song với a”.

Chọn đáp án A.

Câu 24: Trắc nghiệm ID: 307747

Nếu c ⊥ a và b ⊥ a thì:

Xem đáp án

Ta có: \(\left. \begin{array}{l} c \bot a\\ b \bot a \end{array} \right\}\) ⇒ b // c

Chọn đáp án B

Câu 25: Trắc nghiệm ID: 307748

Trong các khẳng định sau, khẳng định nào sai?

Xem đáp án

+ Nếu a // c và b // c thì a // b đúng (theo tính chất ba đường thẳng song song)

+ Nếu a ⊥ c và b ⊥ c thì a // b đúng (theo quan hệ giữa tính vuông góc và tính song song)

+ Nếu a ⊥ c và b ⊥ c thì a ⊥ b sai, vì a // b

+ Nếu a ⊥ c và b // c thì a ⊥ b là đúng (theo quan hệ giữa tính vuông góc và tính song song)

Chọn đáp án C.

Câu 26: Trắc nghiệm ID: 307749

Hai góc đối đỉnh thì

Xem đáp án

Theo lý thuyết, hai đường thẳng cắt nhau tạo thành 2 cặp góc đối đỉnh.

Chọn đáp án B.

Câu 27: Trắc nghiệm ID: 307750

Hai đường thẳng cắt nhau tạo thành bao nhiêu cặp góc đối đỉnh.

Xem đáp án

Theo định nghĩa: Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và trong các góc tạo thành có 1 góc vuông.

Chọn đáp án B.

Câu 28: Trắc nghiệm ID: 307751

Đường thẳng xy là trung trực của đoạn thẳng MN khi

Xem đáp án

Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy.

Do đó đường thẳng xy là trung trực của đoạn thẳng MN khi xy ⊥ MN tại I và IM = IN.

Chọn đáp án C.

Câu 29: Trắc nghiệm ID: 307752

Qua 1 điểm ở ngoài đường thẳng cho trước, ta vẽ được bao nhiêu đường thẳng song song với đường thẳng cho trước.

Xem đáp án

Theo tiên đề Ơ - clít: "Qua 1 điểm ở ngoài đường thẳng cho trước, chỉ có một đường thẳng song song với đường thẳng cho trước."

Chọn đáp án A.

Câu 30: Trắc nghiệm ID: 307753

Số điểm chung của hai đường thẳng song song là

Xem đáp án

Hai đường thẳng song song thì không có điểm chung.

Chọn đáp án A.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »