Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Phan Đình Phùng

Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Phan Đình Phùng

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 78 lượt thi

  • Dễ

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 247767

Phương trình \(\ln \left( {5 - x} \right) = \ln \left( {x + 1} \right)\) có nghiệm là

Xem đáp án

Cách giải:

ĐK: \(\left\{ \begin{array}{l}5 - x > 0\\x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < 5\\x >  - 1\end{array} \right. \Leftrightarrow  - 1 < x < 5\)

PT\( \Leftrightarrow 5 - x = x + 1\) \( \Leftrightarrow x = 2\left( {TM} \right)\)

Vậy phương trình có nghiệm duy nhất \(x = 2\).

Chọn C

Câu 2: Trắc nghiệm ID: 247768

Gọi \({x_1}\) và \({x_2}\) là hai nghiệm của phương trình \({25^x} - {7.5^x} + 10 = 0.\) Giá trị biểu thức \({x_1} + {x_2}\) bằng 

Xem đáp án

Đặt \(t = {5^x} > 0\) ta được: \({t^2} - 7t + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = 5\end{array} \right.\left( {TM} \right)\)

Suy ra \(\left[ \begin{array}{l}{5^x} = 2\\{5^x} = 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {\log _5}2\\x = 1\end{array} \right.\)

Do đó \({x_1} + {x_2} = {\log _5}2 + 1 = {\log _5}10\).

Chọn C

Câu 3: Trắc nghiệm ID: 247769

Phương trình \({3^{2x + 3}} = {3^{4x - 5}}\) có nghiệm là    

Xem đáp án

Ta có: \({3^{2x + 3}} = {3^{4x - 5}} \Leftrightarrow 2x + 3 = 4x - 5\) \( - 2x =  - 8 \Leftrightarrow x = 4\)

Chọn B

Câu 4: Trắc nghiệm ID: 247770

Khối chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng ?

Xem đáp án

Các mặt phẳng đối xứng của hình là: \(\left( {SAC} \right),\left( {SBD} \right),\left( {SFG} \right),\left( {SHI} \right)\).

Chọn D

Câu 5: Trắc nghiệm ID: 247771

Hàm số nào có đồ thị là hình vẽ sau đây ?

Xem đáp án

Từ đồ thị ta thấy hàm số là hàm bậc ba có hệ số \(a > 0\) nên loại A, B.

Đồ thị hàm số đi qua \(\left( {0; - 4} \right)\) nên chỉ có đáp án D thỏa mãn.

Chọn D

Câu 6: Trắc nghiệm ID: 247772

Cho khối nón có chiều cao \(h = 9a\) và bán kính đường tròn đáy \(r = 2a.\) Thể tích của khối nón đã cho là  

Xem đáp án

Thể tích khối nón: \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi .{\left( {2a} \right)^2}.9a = 12\pi {a^3}\).

Chọn A

Câu 7: Trắc nghiệm ID: 247773

Cho hình chữ nhật \(ABCD\) có \(AB = 2a\sqrt 3 ,\,\widehat {ADB} = 60^\circ .\) Gọi \(M,\,N\) lần lượt là trung điểm của \(AD,\,BC.\) Khối trụ tròn xoay tạo thành khi quay hình chữ nhật \(ABCD\) (kể cả điểm trong) xung quanh cạnh \(MN\) có thể tích bằng bao nhiêu ?

Xem đáp án

Khi quay hình chữ nhật quanh \(MN\) ta được hình trụ bán kính \(MA\) và chiều cao \(MN = AB = AD\).

Tam giác \(ABD\) có \(\widehat A = {90^0},AB = 2a\sqrt 3 \) nên \(AD = \dfrac{{AB}}{{\tan {{60}^0}}} = \dfrac{{2a\sqrt 3 }}{{\sqrt 3 }} = 2a\).

Khi đó \(MA = \dfrac{1}{2}AD = a\).

Vậy thể tích \(V = \pi M{A^2}.MN = \pi .{a^2}.2a\sqrt 3  = 2\pi {a^3}\sqrt 3 \).

Chọn C

Câu 8: Trắc nghiệm ID: 247774

Giá trị lớn nhất của hàm số \(y = \dfrac{{x + 2}}{{x - 2}}\) trên đoạn \(\left[ {3;4} \right]\) là 

Xem đáp án

\(TXD:D = \mathbb{R}\backslash \left\{ 2 \right\}\).

Ta có: \(y' = \dfrac{{ - 2.1 - 2.1}}{{{{\left( {x - 2} \right)}^2}}} =  - \dfrac{4}{{{{\left( {x - 2} \right)}^2}}} < 0\) với \(\forall x \in D\) nên hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).

Do đó hàm số nghịch biến trên \(\left[ {3;4} \right]\).

\( \Rightarrow \mathop {\max }\limits_{\left[ {3;4} \right]} y = y\left( 4 \right) = \dfrac{{4 + 2}}{{4 - 2}} = 3\).

Chọn C.

Câu 9: Trắc nghiệm ID: 247775

Phương trình \({2^{{x^2} + 2x + 4}} = 3m - 7\) có nghiệm khi

Xem đáp án

Ta có: \({2^{{x^2} + 2x + 4}} = 3m - 7\)

Dễ thấy \({2^{{x^2} + 2x + 4}} > 0\) nên \(3m - 7 > 0 \Leftrightarrow m > \dfrac{7}{3}\).

PT\( \Leftrightarrow {x^2} + 2x + 4 = {\log _2}\left( {3m - 7} \right)\) \( \Leftrightarrow {\left( {x + 1} \right)^2} + 3 = {\log _2}3m - 7\)

\( \Leftrightarrow {\left( {x + 1} \right)^2} = {\log _2}\left( {3m - 7} \right) - 3\)

Do \({\left( {x + 1} \right)^2} \ge 0\) nên phương trình đã cho có nghiệm \( \Leftrightarrow {\log _2}\left( {3m - 7} \right) - 3 \ge 0\)

\( \Leftrightarrow {\log _2}\left( {3m - 7} \right) \ge 3 \Leftrightarrow 3m - 7 \ge {2^3}\) \( \Leftrightarrow 3m \ge 15 \Leftrightarrow m \ge 5\)

Kết hợp với \(m > \dfrac{7}{3}\) ta được \(m \ge 5\).

Vậy \(m \in \left[ {5; + \infty } \right)\).

Chọn D.

Câu 10: Trắc nghiệm ID: 247776

Cho hàm số \(y = f\left( x \right)\) có đồ thị là hình vẽ sau :

Đường thẳng \(d:y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại bốn điểm phân biệt khi

Xem đáp án

Từ đồ thị hàm số ta thấy đường thẳng \(d:y = m\) cắt đồ thị hàm số đã cho tại \(4\) điểm phân biệt khi \( - 1 < m < 0.\)

Chọn B.

Câu 11: Trắc nghiệm ID: 247777

Cho khối trụ có chiều cao \(h = 4a\) và bán kính đường tròn đáy \(r = 2a.\) Thể tích của khối trụ đã cho bằng 

Xem đáp án

Thể tích khối trụ là: \(V = \pi {r^2}.h = \pi .{\left( {2a} \right)^2}.4a = 16\pi {a^3}.\)

Chọn B.

Câu 12: Trắc nghiệm ID: 247778

Cho \({\log _2}\left( {3x - 1} \right) = 3.\) Giá trị biểu thức \(K = {\log _3}\left( {10x - 3} \right) + {2^{{{\log }_2}\left( {2x - 1} \right)}}\) bằng

Xem đáp án

Ta có: \({\log _2}\left( {3x - 1} \right) = 3 \Leftrightarrow \left\{ \begin{array}{l}x > \dfrac{1}{3}\\3x - 1 = {2^3}\end{array} \right. \Rightarrow x = 3\)

Thay \(x = 3\) vào \(K\) ta được:

\(\begin{array}{l}K = {\log _3}\left( {10.3 - 3} \right) + {2^{{{\log }_2}\left( {2.3 - 1} \right)}}\\ = {\log _3}27 + 5 = 3 + 5 = 8\end{array}\)

Chọn A.

Câu 13: Trắc nghiệm ID: 247779

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị như sau :

Khẳng định nào sau đây đúng ?

Xem đáp án

+) Từ đồ thị hàm số ta thấy: \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  - \infty \) nên \(a < 0.\)

Đồ thị hàm số có ba điểm cực trị nên \(a.b < 0 \Rightarrow b > 0\)

Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên \(c > 0.\)

Suy ra \(a < 0;b > 0;c > 0.\)

Chọn A.

Câu 14: Trắc nghiệm ID: 247780

Đồ thị \(\left( C \right)\) của hàm số \(y = \dfrac{{2x - 5}}{{x + 1}}\) cắt trục \(Oy\) tại điểm \(M.\) Tiếp tuyến của đồ thị \(\left( C \right)\) tại \(M\) có phương trình là 

Xem đáp án

Giao điểm của \(\left( C \right)\) với trục tung là \(M\left( {0;y} \right)\)

Suy ra \(y = \dfrac{{ - 2.0 - 5}}{{0 + 1}} =  - 5 \Rightarrow M\left( {0; - 5} \right)\)

Ta có \(y' = \dfrac{7}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow y\left( 0 \right) = 7\)

Phương trình tiếp tuyến cần tìm là:

\(\begin{array}{l}y = y'\left( 0 \right)\left( {x - 0} \right) + \left( { - 5} \right)\\ \Leftrightarrow y = 7x - 5\end{array}\)

Chọn C.

Câu 15: Trắc nghiệm ID: 247781

Số đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\) là 

Xem đáp án

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x + 2}}{{\sqrt {4{x^2} + 1} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 + \dfrac{2}{x}}}{{\sqrt {4 + \dfrac{1}{{{x^2}}}} }} = \dfrac{1}{2}\)  nên \(y = \dfrac{1}{2}\) là TCN của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x + 2}}{{\sqrt {4{x^2} + 1} }} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{1 + \dfrac{2}{x}}}{{ - \sqrt {4 + \dfrac{1}{{{x^2}}}} }} =  - \dfrac{1}{2}\)  nên \(y =  - \dfrac{1}{2}\) là TCN của đồ thị hàm số

Vậy đồ thị hàm số đã cho có hai TCN.

Chọn A.

Câu 16: Trắc nghiệm ID: 247782

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABCD} \right),\,\,ABCD\) là hình chữ nhật, \(AB = 2BC = 2a,\,SC = 3a.\) Thể tích khối chóp \(S.ABCD\) bằng 

Xem đáp án

Xét tam giác \(ABC\) vuông tại \(B,\) ta có: \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{\left( {2a} \right)}^2} + {a^2}}  = a\sqrt 5 \)

Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC\)

Xét tam giác \(SAC\) vuông tại \(A\) ta có: \(SA = \sqrt {S{C^2} - A{C^2}}  = \sqrt {{{\left( {3a} \right)}^2} - {{\left( {a\sqrt 5 } \right)}^2}}  = 2a\)

Thể tích khối chóp: \({V_{S.ABCD}} = \dfrac{1}{3}SA.{S_{ABCD}} = \dfrac{1}{3}.2a.2a.a = \dfrac{4}{3}{a^3}.\)

Chọn B.

Câu 17: Trắc nghiệm ID: 247783

Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 4a,\,AC = 3a.\) Quay \(\Delta ABC\) xung quanh cạnh \(AB,\) đường gấp khúc \(ACB\) tạo nên một hình nón tròn xoay, Diện tích xung quanh của hình nón đó là

Xem đáp án

Khi quay tam giác \(ABC\) vuông tại \(A\) quanh cạnh \(AB\) ta được hình nón có chiều cao \(AB,\) bán kính đáy \(AC\) và đường sinh \(BC.\)

Ta có: \(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {16{a^2} + 9{a^2}}  = 5a\)

Diện tích xung quanh của hình nón tạo thành là: \({S_{xq}} = \pi .AC.BC = \pi .3a.5a = 15\pi {a^2}.\)

Chọn D.

Câu 19: Trắc nghiệm ID: 247785

Thể tích của khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là 

Xem đáp án

Thể tích khối chóp \(V = \dfrac{1}{3}Bh\), ở đó \(B\) là diện tích đáy, \(h\) là chiều cao.

Chọn B.

Câu 20: Trắc nghiệm ID: 247786

Hàm số nào sau đây đồng biến trên \(\mathbb{R}\) ?

Xem đáp án

Đáp án A: \(\dfrac{e}{2} > 1\) nên hàm số \(y = {\left( {\dfrac{e}{2}} \right)^x}\) đồng biến trên \(\mathbb{R}\).

Chọn A.

Câu 21: Trắc nghiệm ID: 247787

Tập xác định của hàm số \(y = {\left( {{x^2} - 9x + 18} \right)^\pi }\) là 

Xem đáp án

Hàm số \(y = {\left( {{x^2} - 9x + 18} \right)^\pi }\) xác định khi \({x^2} - 9x + 18 > 0\) \( \Leftrightarrow \left( {x - 3} \right)\left( {x - 6} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x > 6\\x < 3\end{array} \right.\)

Vậy TXĐ: \(D = \left( { - \infty ;3} \right) \cup \left( {6; + \infty } \right)\).

Chọn A.

Câu 22: Trắc nghiệm ID: 247788

Đạo hàm của hàm số \(f\left( x \right) = {e^{4x + 2009}}\) là

Xem đáp án

Ta có: \(f'\left( x \right) = \left( {{e^{4x + 2019}}} \right)'\) \( = \left( {4x + 2019} \right)'{e^{4x + 2019}} = 4{e^{4x + 2019}}\).

Chọn C.

Câu 23: Trắc nghiệm ID: 247789

Hàm số nào có bảng biến thiên là hình sau đây ?

Xem đáp án

TCĐ: \(x = 1\) nên loại D.

TCN: \(y =  - 1\) nên loại B, C.

Chọn A

Câu 24: Trắc nghiệm ID: 247790

Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\) ?

Xem đáp án

Đáp án A: TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\)

\(y' = \dfrac{{2.2 - \left( { - 1} \right).1}}{{{{\left( {x + 2} \right)}^2}}} = \dfrac{5}{{{{\left( {x + 2} \right)}^2}}} > 0\) nên hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\) (loại)

Đáp án B: TXĐ: \(D = \mathbb{R}\).

\(y' =  - 3{x^2} + 2x - 5\) có \(\Delta ' = 1 - \left( { - 3} \right).\left( { - 5} \right) =  - 14 < 0\) và \(a =  - 3 < 0\) nên \(y' < 0,\forall x \in \mathbb{R}\)

Do đó hàm số nghịch biến trên \(\mathbb{R}\) (loại)

Đáp án C: TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' = 3{x^2} + 2 > 0,\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\).

Chọn C.

Câu 25: Trắc nghiệm ID: 247791

Cho hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\), mệnh đề nào sau đây đúng ? 

Xem đáp án

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

Ta có: \(y' = \dfrac{{2.1 - \left( { - 1} \right).1}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{3}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in D\)

Do đó hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

Chọn B.

Câu 26: Trắc nghiệm ID: 247792

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau :

Khoảng nghịch biến của hàm số \(y = f\left( x \right)\) là

Xem đáp án

Ta thấy, \(f'\left( x \right) < 0,\forall x \in \left( {1;3} \right)\) nên hàm số nghịch biến trên khoảng \(\left( {1;3} \right)\).

Chọn C.

Câu 27: Trắc nghiệm ID: 247793

Cho hình nón có bán kính đường tròn đáy \(r = 3a\) và đường sinh \(l = 2r.\) Diện tích xung quanh của hình nón bằng 

Xem đáp án

Diện tích xung quanh hình nón \({S_{xq}} = \pi rl\)\( = \pi .\left( {3a} \right).\left( {2.3a} \right) = 18\pi {a^2}\).

Chọn D.

Câu 28: Trắc nghiệm ID: 247794

Hàm số nào sau đây có ba điểm cực trị ?

Xem đáp án

Đáp án A: Hàm phân thức bậc nhất trên bậc nhất \(\left( {ad - bc \ne 0} \right)\) không có điểm cực trị (loại)

Đáp án B: Ta có: \(y' =  - 4{x^3} - 8x\) \( =  - 4x\left( {{x^2} + 2} \right) = 0 \Leftrightarrow x = 0\)

Do đó hàm số chỉ có một điểm cực trị \(x = 0\) (loại)

Đáp án C: Hàm đa thức bậc ba chỉ có tối đa hai điểm cực trị (loại)

Đáp án D: \(y' = 12{x^3} - 2x = 2x\left( {6{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \dfrac{1}{{\sqrt 6 }}\end{array} \right.\) nên hàm số đã cho có ba điểm cực trị.

Chọn D.

Câu 29: Trắc nghiệm ID: 247795

Thể tích của khối hộp chữ nhật có ba kích thước \(2;3\) và \(4\) là :

Xem đáp án

Thể tích khối hộp chữ nhật là: \(V = 2.3.4 = 24\)

Chọn A

Câu 30: Trắc nghiệm ID: 247796

Cho khối chóp tam giác \(S.ABC\). Gọi \(M,\,\,N,\,\,P\) lần lượt là trung điểm của \(SA,\,\,SB,\,\,SC\). Tỉ số giữa thể tích của khối chóp \(S.MNP\) và khối chóp \(S.ABC\) là:

Xem đáp án

Vì \(M,N,P\) lần lượt là trung điểm của \(SA,SB,SC\) nên \(\dfrac{{SM}}{{SA}} = \dfrac{{SN}}{{SB}} = \dfrac{{SP}}{{SC}} = \dfrac{1}{2}.\)

Ta có tỉ số thể tích cần tìm là:

\(\dfrac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SN}}{{SB}}.\dfrac{{SP}}{{SC}} = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{8}\)

Chọn B.

Câu 31: Trắc nghiệm ID: 247797

Cho hàm số \(y = f(x)\) có đồ thị là hình vẽ sau :

Điểm cực đại của hàm số \(y = f(x)\) là:

Xem đáp án

Từ đths ta thấy \(f'\left( x \right) > 0\) với \(x < 0\) và \(f'\left( x \right) < 0\) khi \(x < 0\)

Suy ra \(x = 0\) là điểm cực đại của hàm số.

Chọn B.

Câu 32: Trắc nghiệm ID: 247798

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông tại \(A\). Biết \(AA' = a\sqrt 3 ,\,\,AB = a\sqrt 2 \) và \(AC = 2a\). Thể ích của khối lăng trụ \(ABC.A'B'C'\) là

Xem đáp án

Diện tích đáy \({S_{ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}a\sqrt 2 .2a = \sqrt 2 {a^2}\)

Thể tích lăng trụ cần tìm là: \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = \sqrt 3 a.\sqrt 2 {a^2} = \sqrt 6 {a^3}\)

Chọn A.

Câu 33: Trắc nghiệm ID: 247799

Gọi \(M\) và \(n\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3 + 4\) trên đoạn \(\left[ {0;2} \right]\). Giá trị của biểu thức \({M^2} + {m^2}\) bằng:

Xem đáp án

TXĐ: \(D = \mathbb{R}\)

Ta có \(y' = 3{x^2} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\left( L \right)\\x = 1\left( N \right)\end{array} \right.\)

Khi đó \(y\left( 1 \right) = 2;y\left( 0 \right) = 4;y\left( 2 \right) = 6\)

Suy ra \(m = \mathop {\min }\limits_{\left[ {0;2} \right]} y = 2 \Leftrightarrow x = 1;\,M = \mathop {\max }\limits_{\left[ {0;2} \right]} y = 6 \Leftrightarrow x = 2\)

Do đó \({m^2} + {M^2} = {2^2} + {6^2} = 40.\)

Chọn D.

Câu 34: Trắc nghiệm ID: 247800

Thể tích của khối cầu có bán kính \(r = 2\) là :

Xem đáp án

Thể tích khối cầu là: \(V = \dfrac{4}{3}\pi {r^3} = \dfrac{4}{3}\pi {.2^3} = \dfrac{{32}}{3}\pi \)

Chọn A

Câu 35: Trắc nghiệm ID: 247801

 Với \(a,b,c\) là các số dương và \(a \ne 1\), mệnh đề nào sau đây sai ?

Xem đáp án

Vì \({\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\,\,\left( {a;b;c > 0;a \ne 1} \right)\) nên B sai.

Chọn B.

Câu 36: Trắc nghiệm ID: 247802

Giá trị cực đại của hàm số \(y = \dfrac{1}{3}{x^3} - 4x + 2\) là:

Xem đáp án

Ta có \(y' = {x^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 2\end{array} \right.\)

BBT: 

Từ BBT suy ra giá trị cực đại là \(y = \dfrac{{22}}{3}\) khi \(x =  - 2.\)

Chọn C.

Câu 37: Trắc nghiệm ID: 247803

Cắt khối nón bởi một mặt phẳng qua trục, thiết diện là một tam giác đều có diện tích bằng \(25\sqrt 3 {a^2}\). Thể tích của khối nón đó bằng

Xem đáp án

Tam giác \(SAB\) là tam giác đều có diện tích \(S = \dfrac{{A{B^2}\sqrt 3 }}{4} = 25\sqrt 3 {a^2} \Leftrightarrow A{B^2} = 100{a^2} \Rightarrow AB = 10a = SA\)

Suy ra \(SH = \sqrt {S{A^2} - A{O^2}}  = \sqrt {{{10}^2} - {5^2}}  = 5\sqrt 3 a\)

Thể tích khối nón là: \(V = \dfrac{1}{3}\pi SH.O{A^2} = \dfrac{1}{3}\pi .{\left( {5a} \right)^2}.\left( {5\sqrt 3 a} \right) = \dfrac{{125{a^3}}}{3}\pi \)

Chọn A.

Câu 38: Trắc nghiệm ID: 247804

Với \(a,b\) là các số thực dương và \(\alpha ,\beta \) là các số thực, mệnh đề nào sau đây sai ?

Xem đáp án

Ta có: \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha .\beta }}\) nên A sai.

Chọn A.

Câu 39: Trắc nghiệm ID: 247805

Đồ thị hàm số \(y = \dfrac{{3 + 2x}}{{2x - 2}}\) có đường tiệm cận đứng là 

Xem đáp án

Đồ thị hàm số có đường TCĐ: \(x = 1\).

Chọn D.

Câu 40: Trắc nghiệm ID: 247806

Tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm \(M\left( { - 1; - 2} \right)\) có phương trình là

Xem đáp án

Ta có: \(y' = 3{x^2} - 6x\)

\(y'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} - 6.\left( { - 1} \right) = 9\)

Phương trình tiếp tuyến: \(y = 9\left( {x + 1} \right) - 2 = 9x + 7\).

Chọn C.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »