Câu hỏi Đáp án 3 năm trước 52

Trung điểm của tất cả các cạnh của hình tứ diện đều là các đỉnh của khối đa diện nào?

A. Hình hộp chữ nhật. 

B. Hình bát diện đều.    

Đáp án chính xác ✅

C. Hình lập phương.  

D. Hình tứ diện đều. 

Lời giải của giáo viên

verified ToanVN.com

 

Giả sử ABCD là tứ diện đều. Gọi \(M,{\mkern 1mu} N,{\mkern 1mu} P,{\mkern 1mu} Q,{\mkern 1mu} S,{\mkern 1mu} T\) lần lượt là trung điểm của \(AD,{\mkern 1mu} AB,{\mkern 1mu} BC,{\mkern 1mu} CD,{\mkern 1mu} AC,{\mkern 1mu} BD.\) Khi đó các trung điểm các cạnh của tứ diện đều tạo thành hình SMNPQT. Do đó SMNPQT không thể là tứ diện đều được. Ta loại đáp án D.

Do \(S,{\mkern 1mu} M\) là trung điểm của \(AC,{\mkern 1mu} AD\) nên \(SM// = \dfrac{1}{2}CD.\)

Tương tự ta có \(SQ// = \dfrac{1}{2}AD,{\mkern 1mu} {\mkern 1mu} MQ// = \dfrac{1}{2}AC.\) Do \(\Delta ACD\) là tam giác đều nên  \(AC = CD = DA.\) Kéo theo \(SM = SQ = MQ.\)

Chứng minh tương tự ta nhận được các cạnh của SMNPQT có độ dài như nhau.

Mặt khác từ \(SM = SQ = MQ\)suy ra \(\Delta SMQ\) là tam giác đều, do đó \(\widehat {QSM} = {60^0}.\) Do đó SMNPQT không thể là hình hộp chữ nhật hay hình lập phương được. Như vậy đáp án \(A,{\mkern 1mu} C\) đều bị loại.

Chọn B.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài MN nhỏ nhất:

Xem lời giải » 3 năm trước 71
Câu 2: Trắc nghiệm

Cho hàm số \(y = \dfrac{{\sqrt {x - 2} }}{{\left( {{x^2} - 4} \right)\left( {2x - 7} \right)}}\). Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

Xem lời giải » 3 năm trước 65
Câu 3: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SC tạo với đáy một góc \({45^0}\) . Tính khoảng cách từ A đến mặt phẳng (SBD).

Xem lời giải » 3 năm trước 62
Câu 4: Trắc nghiệm

Cho hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?

Xem lời giải » 3 năm trước 60
Câu 5: Trắc nghiệm

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = \dfrac{{a\sqrt 3 }}{2}\), tam giác ABC đều cạnh bằng \(a\) (minh họa như hình dưới).

Góc  tạo bởi giữa mặt phẳng\((SBC)\) và \(\left( {ABC} \right)\) bằng

Xem lời giải » 3 năm trước 59
Câu 6: Trắc nghiệm

Số giá trị nguyên của tham số \(m\) để hàm số \(y = {\rm{\;}} - \dfrac{1}{3}{x^3} + m{x^2} - \left( {3 + 2m} \right)x - 2020\) nghịch biến trên \(\mathbb{R}\) là:

Xem lời giải » 3 năm trước 59
Câu 7: Trắc nghiệm

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở \(B\), cạnh \(AC = 2a\). Cạnh SA vuông góc với mặt đáy \((ABC)\), tam giác SAB cân. Tính thể tích hình chóp S.ABC theo \(a\).

Xem lời giải » 3 năm trước 59
Câu 8: Trắc nghiệm

Cho hàm số \(y = {\rm{\;}} - {x^4} + 2{x^2} + 3.\) Mệnh đề nào sau đây là đúng?

Xem lời giải » 3 năm trước 58
Câu 9: Trắc nghiệm

Khối lập phương có bao nhiêu mặt đối xứng ?

Xem lời giải » 3 năm trước 58
Câu 10: Trắc nghiệm

Biết rằng hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị là đường cong như hình vẽ bên dưới.

Tính giá trị \(f\left( {3a + 2b + c} \right)\).

Xem lời giải » 3 năm trước 57
Câu 11: Trắc nghiệm

Hình chóp tam giác đều S.ABC có cạnh đáy là a và cạnh bên tạo với đáy một góc \({45^0}\). Tính theo \(a\) thể tích khối chóp S.ABC.

Xem lời giải » 3 năm trước 57
Câu 12: Trắc nghiệm

Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3x + 2\) song song với đường thẳng \(y = 9x - 14.\)

Xem lời giải » 3 năm trước 57
Câu 13: Trắc nghiệm

Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?

Xem lời giải » 3 năm trước 57
Câu 14: Trắc nghiệm

Điểm cực tiểu của hàm số \(y = {x^3} - 3x - 2\) là:

Xem lời giải » 3 năm trước 55
Câu 15: Trắc nghiệm

Trong các hàm số sau, hàm số nào nghịch biến trên khoảng \(\left( {0;\sqrt 2 } \right)\)?

Xem lời giải » 3 năm trước 54

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »