Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm M(3;-1;1) và vuông góc với đường thẳng \(\Delta :\frac{{x - 1}}{3} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 3}}{1}\)?
A. 3x - 2y + z + 12 = 0
B. 3x + 2y + z - 8 = 0
C. 3x - 2y + z - 12 = 0
D. x - 2y + 3z + 3 = 0
Lời giải của giáo viên
ToanVN.com
Do \(\left( P \right) \bot d\) nên mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow {{n_{\left( P \right)}}} = \overrightarrow {{u_d}} = \left( {3; - 2;1} \right).\)
Điểm \(M\left( {3; - 1;1} \right) \in \left( P \right)\) nên phương trình mặt phẳng (P) là:
\(\begin{array}{l} 3\left( {x - 3} \right) - 2\left( {y + 1} \right) + 1\left( {z - 1} \right) = 0\\ \Leftrightarrow 3x - 2y + z - 12 = 0 \end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta\) có phương trình \(\frac{{x - 1}}{2} = \frac{y}{2} = \frac{{z + 1}}{{ - 1}}\) và mặt phẳng \(\left( P \right):2x - y + 2z - 1 = 0\). Viết phương trình mặt phẳng (Q) chứa \(\Delta\) và tạo với (P) một góc nhỏ nhất.
Cho điểm M(1;2;-1). Viết phương trình mặt phẳng \((\alpha)\) đi qua gốc tọa độ O(0;0;0) và cách M một khoảng lớn nhất.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x - y + z + 3 = 0\) và ba điểm A(0;1;2), B(1;1;1), C(2;-2;3). Tọa độ điểm M thuộc (P) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) nhỏ nhất là
Trong không gian hệ trục tọa độ Oxyz cho mặt phẳng (P) đi qua gốc tọa độ O và vuông góc với hai mặt phẳng \(\left( Q \right):2x - y + 3z - 1 = 0\); \(\left( R \right):x + 2y + z = 0\). Phương trình mặt phẳng (P) là
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):x + y + 2z + 1 = 0\), \(\left( Q \right):x + y - z + 2 = 0\), \(\left( R \right):x - y + 5 = 0\). Trong các mệnh đề sau, mệnh đề nào sai?
Trong không gian với hệ trục tọa độ Oxyz, gọi \((\alpha)\) là mặt phẳng cắt ba trục tọa độ tại ba điểm. Phương trình của \((\alpha)\) là
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;1;2} \right),B\left( {3; - 1;1} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0\). Mặt phẳng (Q) chứa A, B và vuông góc với mặt phẳng (P) có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1 + 2t\\ y = t\\ z = - 2 - 3t \end{array} \right.\left( {t \in R} \right)\) và mặt phẳng \(\left( P \right):2x + y + z - 2 = 0\). Giao điểm M của d và (P) có tọa độ là
Trong không gian với hệ tọa độ Oxyz, tính góc giữa hai đường thẳng \({d_1}:\frac{x}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{2}\) và \({d_2}:\frac{{x + 1}}{{ - 1}} = \frac{y}{1} = \frac{{z - 3}}{1}\).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\) và điểm \(A\left( {2;0; - 1} \right)\). Mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d có phương trình là
Trong không gian hệ tọa độ Oxyz cho tứ diện ABCD có \(A\left( {2;3;1} \right),B\left( {4;1; - 2} \right),C\left( {6;3;7} \right)\), D(-5;-4;8). Độ dài đường cao kẻ từ D của tứ diện là
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = 2 + t\\ y = 1 + mt\\ z = - 2t \end{array} \right.\left( {t \in R} \right)\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 6y - 4z + 13 = 0\). Có bao nhiêu giá trị nguyên của m để d cắt (S) tại hai điểm phân biệt?
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1; - 1;1} \right),B\left( {0;1; - 2} \right)\) và điểm M thay đổi trên mặt phẳng tọa độ Oxy. Giá trị lớn nhất của biểu thức T = |MA - MB| là
Cho tam giác ABC có A(1;2;3), \(B\left( { - 3;0;1} \right),C\left( { - 1;y;z} \right)\). Trọng tâm của tam giác ABC thuộc trục Ox khi cặp (y;z) là
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{3}\) và vuông góc với mặt phẳng \(\left( Q \right):2x + y - z + 0\).