Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm là \(I\left( {1;0; - 3} \right)\)và bán kính \(R = 3\)?
A. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 9\)
B. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 3\)
C. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 3\)
D. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 9\)
Lời giải của giáo viên
ToanVN.com
Phương trình mặt cầu tìm \(I\left( {1;0; - 3} \right)\), bán kính R = 3 là: \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 9.\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho phương trình \({z^2} + bz + c = 0\) ẩn z và b, c là tham số thuộc tập số thực. Biết phương trình nhận \(z = 1 + i\) là một nghiệm. Hãy tính \(T = b + c.\)
Nghiệm của phương trình cho sau: \(\left( {3 + i} \right)z + \left( {4 - 5i} \right) = 6 - 3i\) là
Cho tích phân sau \(I = \int\limits_3^5 {\frac{1}{{2x - 1}}dx} = a\ln 3 + b\ln 5\,\,\,\left( {a,b \in \mathbb{Q}} \right)\). Tính \(S = a + b.\)
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right)\) đi qua 2 điểm \(A\left( {1;2;0} \right)\), \(B\left( {2;3;1} \right)\) và song song với trục \(Oz\) có phương trình là
Họ nguyên hàm của hàm số\(f\left( x \right) = {x^2} + 3\) là
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;2;0} \right)\) và vuông góc với đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\) có phương trình là
Trong không gian Oxyz, phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( { - 1;2;0} \right)\) và có vectơ pháp tuyến là \(\overrightarrow n = \left( {4;0; - 5} \right)\) là
Cho \(z = 1 + \sqrt 3 i\). Hãy tìm số phức nghịch đảo của số phức \(z\).
Trong không gian Oxyz, cho điểm \(M\left( {3;4; - 2} \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?
Tìm họ nguyên hàm của hàm số sau \(f\left( x \right) = {e^{5x - 3}}.\)
Trong không gian Oxyz, cho biết mặt phẳng đi qua tâm của mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) và song song với mặt phẳng \(\left( {Oxz} \right)\)có phương trình là
Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_0^{2019} {f\left( x \right)dx} = 1\). Hãy tính tích phân \(I = \int\limits_0^1 {f\left( {2019x} \right)dx} .\)
Trong mặt phẳng tọa độ Oxy, cho điểm \(A\left( { - 3;4} \right)\) biểu diễn cho số phức z. Tìm tọa độ điểm B biểu diễn cho số phức sau \(\omega = i\overline z \).
Trong không gian Oxyz, mặt cầu sau \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\) có tâm và bán kính lần lượt là