Câu hỏi Đáp án 3 năm trước 58

Tìm tất cả các giá trị thực của tham số \(m\) sao cho điểm cực tiểu của đồ thị hàm số \(y = {x^3} + {x^2} + mx - 1\) nằm bên phải trục tung?

A. \(m < 0\)    

Đáp án chính xác ✅

B. \(0 < m < \dfrac{1}{3}\)   

C. \(m < \dfrac{1}{3}\)  

D. Không tồn tại 

Lời giải của giáo viên

verified ToanVN.com

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' = 3{x^2} + 2x + m\).

Để hàm số có 2 điểm cực trị thì phương trình \(y' = 0\) phải có 2 nghiệm phân biệt \( \Leftrightarrow \Delta ' = 1 - 3m > 0 \Leftrightarrow m < \dfrac{1}{3}\)

Khi đó ta có \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}{x_1} = \dfrac{{ - 1 + \sqrt {1 - 3m} }}{3}\\{x_2} = \dfrac{{ - 1 - \sqrt {1 - 3m} }}{3}\end{array} \right.\).

Vì hàm số \(y = {x^3} + {x^2} + mx - 1\) có hệ số \(a = 1 > 0\) nên \({x_{CT}} > {x_{CD}}\), do đó \({x_{CT}} = {x_1} = \dfrac{{ - 1 + \sqrt {1 - 3m} }}{3}\).

Theo bài ra ta có .

\(\begin{array}{l}\dfrac{{ - 1 + \sqrt {1 - 3m} }}{3} > 0\\ \Leftrightarrow  - 1 + \sqrt {1 - 3m}  > 0\\ \Leftrightarrow \sqrt {1 - 3m}  > 1\\ \Leftrightarrow 1 - 3m > 1 \Leftrightarrow m < 0\end{array}\)

Kết hợp điều kiện ta có \(m < 0\).

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông  cân tại \(A\),\(BC = 2a,\) \(SA = a\) và \(SA\) vuông góc với đáy. Tính góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\)?

Xem lời giải » 3 năm trước 70
Câu 2: Trắc nghiệm

Cho hàm số \(y = \dfrac{{{x^2} + x}}{{x - 2}}\) có đồ thị \(\left( C \right)\). Phương trình tiếp tuyến tại điểm \(A\left( {1; - 2} \right)\) của \(\left( C \right)\) là

Xem lời giải » 3 năm trước 68
Câu 3: Trắc nghiệm

Giá trị cực đại  của hàm số \(y = {x^3} - 12x + 20\) là:

Xem lời giải » 3 năm trước 66
Câu 4: Trắc nghiệm

Cho cấp số cộng \(\left( {{u_n}} \right)\) có các số hạng đầu lần lượt là 5; 9; 13; 17... Tìm  công thức số hạng tổng quát \({u_n}\) của cấp số cộng? 

Xem lời giải » 3 năm trước 66
Câu 5: Trắc nghiệm

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 2a\), \(AD = a\), \(AA' = a\sqrt 3 \). Gọi \(M\) là trung điểm cạnh \(AB\). Tính khoảng cách \(h\) từ điểm \(D\) đến mặt phẳng \(\left( {B'MC} \right).\)

Xem lời giải » 3 năm trước 64
Câu 6: Trắc nghiệm

Khai triển \({\left( {x - 3} \right)^{100}}\) ta được đa thức \({\left( {x - 3} \right)^{100}} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_{100}}{x^{100}}\), \({a_1},\,\,{a_2},...,{a_{100}}\) là các hệ số thực. Tính \({a_0} - {a_1} + {a_2} - ... - {a_{99}} + {a_{100}}?\)

Xem lời giải » 3 năm trước 63
Câu 7: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(f'\left( x \right) > 0,\,\,\forall x \in \mathbb{R}\). Biết \(f\left( 1 \right) = 2\). Hỏi khẳng định nào sau đây có thể xảy ra?

Xem lời giải » 3 năm trước 62
Câu 8: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành, \(AB = a,\,\,SA = a\sqrt 3 \) và vuông góc với \(\left( {ABCD} \right)\). Tính góc giữa hai đường thẳng SB và CD.

Xem lời giải » 3 năm trước 62
Câu 9: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh a, \(SA = \sqrt 2 a\) và SA vuông góc với \(\left( {ABCD} \right)\). Góc giữa SC và ABCD bằng

Xem lời giải » 3 năm trước 61
Câu 10: Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Tính khoảng cách giữa hai đường thẳng \(AB'\) và \(CD'\).

Xem lời giải » 3 năm trước 60
Câu 11: Trắc nghiệm

Gọi \(\left( P \right)\) là đồ thị hàm số \(y = 2{x^3} - x + 3\). Trong các đường thẳng sau, đường thẳng nào là tiếp tuyến của \(\left( P \right)\)?

Xem lời giải » 3 năm trước 60
Câu 12: Trắc nghiệm

Cho hàm số \(y = \dfrac{{3x - 1}}{{x - 3}}\) có đồ thị \(\left( C \right)\). Mệnh đề nào sau đây sai?

Xem lời giải » 3 năm trước 60
Câu 13: Trắc nghiệm

Tung hai con súc sắc 3 lần độc lập với nhau. Tính xác suất để có đúng một lần tổng số chấm xuất hiện ở hai con súc sắc bằng 6. (Kết quả làm tròn đến 3 chữ số phần thập phân)

Xem lời giải » 3 năm trước 57
Câu 14: Trắc nghiệm

Số nghiệm của phương trình \(\sin 5x + \sqrt 3 \cos 5x = 2\sin 7x\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\)là?

Xem lời giải » 3 năm trước 57
Câu 15: Trắc nghiệm

Biết số tự nhiên \(n\) thỏa mãn \(C_n^1 + 2\dfrac{{C_n^2}}{{C_n^1}} + ... + n\dfrac{{C_n^n}}{{C_n^{n - 1}}} = 45\). Tính \(C_{n + 4}^n?\)

Xem lời giải » 3 năm trước 57

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »