Câu hỏi Đáp án 3 năm trước 52

Một đường thẳng cắt đồ thị hàm số \(y = {x^4} - 2{x^2}\) tại 4 điểm phân biệt có hoành độ \(0,{\mkern 1mu} 1,{\mkern 1mu} m\) và n. Tính \(S = {m^2} + {n^2}.\) 

A. \(S = 1.\)      

B. \(S = 2.\)  

C. \(S = 0.\)   

D. \(S = 3.\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Gọi phương trình đường thẳng bài cho là: \(d:{\mkern 1mu} {\mkern 1mu} y = ax + b.\)

Đường thẳng  \(d\) cắt đồ thị hàm số \(\left( C \right):{\mkern 1mu} {\mkern 1mu} y = {x^4} - 2{x^2}\) tại hai điểm có hoành độ là \(0;{\mkern 1mu} {\mkern 1mu} 1 \Rightarrow \) tọa độ hai điểm đó là: \(A\left( {0;{\mkern 1mu} 0} \right),{\mkern 1mu} {\mkern 1mu} B\left( {1; - 1} \right).\)

 

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a.0 + b = 0}\\{a + b = {\rm{\;}} - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 0}\\{a = {\rm{\;}} - 1}\end{array}} \right. \Rightarrow d:{\mkern 1mu} {\mkern 1mu} y = {\rm{\;}} - x.\)

Khi đó ta có phương trình hoành độ giao điểm của hai đồ thị hàm số là:

\(\begin{array}{*{20}{l}}{ - x = {x^4} - 2{x^2} \Leftrightarrow {x^4} - 2{x^2} + x = 0 \Leftrightarrow x\left( {{x^3} - 2x + 1} \right) = 0}\\{ \Leftrightarrow x\left( {x - 1} \right)\left( {{x^2} + x - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\\{{x^2} + x - 1 = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( * \right)}\end{array}} \right.}\end{array}\)

Khi đó \(m,{\mkern 1mu} {\mkern 1mu} n\) là hai nghiệm của phương trình \(\left( * \right).\)

Áp dụng hệ thức Vi-ét ta có: \(\left\{ {\begin{array}{*{20}{l}}{m + n = {\rm{\;}} - 1}\\{mn = {\rm{\;}} - 1}\end{array}} \right..\)

\( \Rightarrow S = {m^2} + {n^2} = {\left( {m + n} \right)^2} - 2mn = 1 + 2 = 3.\)

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ

 

Hàm số đồng biến trên khoảng:

Xem lời giải » 3 năm trước 70
Câu 2: Trắc nghiệm

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2{x^3} + 3{x^2} - 1\) trên đoạn\(\left[ { - 2; - \dfrac{1}{2}} \right]\). Tính \(P = M - m\). 

Xem lời giải » 3 năm trước 62
Câu 3: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\) là:

Xem lời giải » 3 năm trước 62
Câu 4: Trắc nghiệm

Cho hàm số \(y = f(x)\) có đạo hàm \(f'\left( x \right) = 2018{\left( {x - 1} \right)^{2017}}{\left( {x - 2} \right)^{2018}}{\left( {x - 3} \right)^{2019}}\). Tìm số điểm cực trị của \(f(x)\). 

Xem lời giải » 3 năm trước 61
Câu 5: Trắc nghiệm

Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:

Xem lời giải » 3 năm trước 60
Câu 6: Trắc nghiệm

Đồ thị hình bên là của hàm số nào?

 

Xem lời giải » 3 năm trước 60
Câu 7: Trắc nghiệm

Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(SA = a\), \(AB = a\), \(AC = 2a\), \(BC = a\sqrt 3 .\) Tính thể tích khối chóp S.ABC. 

Xem lời giải » 3 năm trước 59
Câu 8: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ

Đồ thị hàm số \(y = \left| {f\left( x \right) - 2m} \right|\) có 5 điểm cực trị khi và chỉ khi

Xem lời giải » 3 năm trước 59
Câu 9: Trắc nghiệm

Cho hàm số \(y = a{x^4} + b{x^2} + c\)  có đồ thị như hình vẽ. Mệnh đề nào sau đây sai?

Xem lời giải » 3 năm trước 59
Câu 10: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 3;4} \right]\) và có đồ thị như hình vẽ bên. Gọi \(M\) và \(m\) lần lượt là các giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 3;4} \right]\). Tính \(M + m\).

Xem lời giải » 3 năm trước 59
Câu 11: Trắc nghiệm

Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài MN nhỏ nhất:

Xem lời giải » 3 năm trước 59
Câu 12: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là: 

Xem lời giải » 3 năm trước 57
Câu 13: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận

Xem lời giải » 3 năm trước 57
Câu 14: Trắc nghiệm

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, \(AB = 2a,{\mkern 1mu} {\mkern 1mu} \widehat {BAC} = {60^0}\) và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng SB và mặt phẳng \(\left( {SAC} \right)\) bằng 

Xem lời giải » 3 năm trước 56
Câu 15: Trắc nghiệm

Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là : 

Xem lời giải » 3 năm trước 56

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »