Kết quả tính \(\int 2 x \sqrt{5-4 x^{2}} d x\) bằng
A. \(-\frac{1}{6} \sqrt{\left(5-4 x^{2}\right)^{3}}+C\)
B. \(-\frac{3}{8} \sqrt{\left(5-4 x^{2}\right)}+C\)
C. \(\frac{1}{6} \sqrt{\left(5-4 x^{2}\right)^{3}}+C\)
D. \(-\frac{1}{12} \sqrt{\left(5-4 x^{2}\right)^{3}}+C\)
Lời giải của giáo viên
ToanVN.com
Đặt \(t=\sqrt{5-4 x^{2}} \Rightarrow t d t=-4 x d x\)
Khi đó
\(\int 2 x \sqrt{5-4 x^{2}} d x=-\frac{1}{2} \int t^{2} d t=-\frac{1}{6} t^{3}+C=-\frac{1}{6} \sqrt{\left(5-4 x^{2}\right)^{3}}+C\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz , cho điểm M (5;7; -13). Gọi H là hình chiếu vuông góc của M trên mặt phẳng (Oyz). Tọa độ điểm H là?
Cho \(\vec a(-2;0;1);\vec b(1;3;-2)\)Trong các khẳng định sau khẳng định nào đúng ?
Nguyên hàm F(x) của hàm số \(f\left( x \right) = \frac{{2{x^4} + 3}}{{{x^2}}}\left( {x \ne 0} \right)\) là
Trong không gian với hệ tọa độ Oxyz , cho hai điểm \(A(3 ; 2 ; 2), B(4 ;-1 ; 0)\) Viết phương trình đường thẳng \(\Delta\) qua hai điểm A và B.
Trong không gian Oxyz , cho điểm M (1;2;3). Hình chiếu vuông góc của M trên (Oxz) là điểm nào sau đây?
Xét hai hàm số f và g liên tục trên đoạn [a; b]. Trong các mệnh đề sau, mệnh đề nào sai?
Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD với A( 0;0;1);B(0;1;0);C(1;0;0);D(-2;3;-1) . Thể tích khối tứ diện ABCD bằng:
Trong không gian tọa độ Oxyz, cho đường thẳng \(d:\frac{x-3}{2}=\frac{y-2}{1}=\frac{z-1}{-2}\) và mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+2y-4z-19=0\). Tìm tọa độ điểm M thuộc đường thẳng d sao cho mặt phẳng qua M và vuông góc với d cắt mặt cầu (S) theo một đường tròn có chu vi bằng \(8\pi \).
Trong không gian Oxyz , đường thẳng \(\Delta\text{đi qua }A(1 ; 2 ;-1)\) và song song với đường thẳng \(d: \frac{x-3}{1}=\frac{y-3}{3}=\frac{z}{2}\) có phương trình là:
Nếu có \( \overrightarrow {OM} = a\overrightarrow i + b\overrightarrow k + c\overrightarrow j \) thì điểm (M ) có tọa độ:
rong không gian Oxyz , cho ba đường thẳng \(d_{1}: \frac{x-1}{2}=\frac{y}{3}=\frac{z+1}{-1} ; d_{2}: \frac{x+2}{1}=\frac{y-1}{-2}=\frac{z}{2}\);\(d_{3}: \frac{x+3}{-3}=\frac{y-2}{-4}=\frac{z+5}{8}\). Đường thẳng song song với \(d_{3},\, cắt \,d_{1}\, và\,d_{2}\) có phương trình là
Trong không gian Oxyz cho điểm A(-1;2;1), hình chiếu vuông góc của điểm A lên mặt phẳng tọa độ (Oxy)