Cho tứ diện ABCD, trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho \(BC = 3BM,BD = \frac{3}{2}BN,\) \(AC = 2AP\). Mặt phẳng \(\left( {MNP} \right)\) chia khối tứ diện ABCD thành hai khối đa diện có thể tích là \({V_1},{V_2}\), trong đó khối đa diện chứa cạnh CD có thể tích là \({V_2}\). Tính tie số \(\frac{{{V_1}}}{{{V_2}}}\).
A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{19}}\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{13}}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{15}}{{19}}\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{{19}}\)
Lời giải của giáo viên
ToanVN.com
Trong \(\left( {BCD} \right)\) gọi \(E = MN \cap CD\)
Trong \(\left( {ACD} \right)\) gọi \(Q = AD \cap PE\)
Khi đó thiết diện của hình chóp khi cắt bởi mặt phẳng \(9MNP\) là tứ giác MNQP.
Áp dụng định lí Menelaus trong tam giác BCD có:
\(\frac{{MB}}{{MC}}.\frac{{EC}}{{ED}}.\frac{{ND}}{{NB}} = 1 \Rightarrow \frac{1}{2}.\frac{{EC}}{{ED}}.\frac{1}{2} = 1 \Rightarrow \frac{{EC}}{{ED}} = 4\)
Áp dụng định lý Menelaus trong tam giác ACD có:
\(\frac{{PA}}{{PC}}.\frac{{EC}}{{ED}}.\frac{{QD}}{{QA}} = 1 \Rightarrow 1.4.\frac{{QD}}{{QA}} = 1 \Rightarrow \frac{{QD}}{{QA}} = \frac{1}{4}\)
\(\frac{{{S_{NMC}}}}{{{S_{DBC}}}} = \frac{{d\left( {N;BC} \right).MC}}{{d\left( {D;BC} \right).BC}} = \frac{{NB}}{{DB}}.\frac{{MC}}{{BC}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9} \Rightarrow \frac{{{V_{AMNC}}}}{{{V_{ABCD}}}} = \frac{4}{9}\)
Nên \({V_{AMNP}} = \frac{2}{9}{V_{ACDN}}\)
\( + )\frac{{{V_{APQN}}}}{{{V_{ACDN}}}} = \frac{{AP}}{{AC}}.\frac{{AQ}}{{AD}} = \frac{1}{2}.\frac{4}{5} = \frac{2}{5} \Rightarrow {V_{APQN}} = \frac{2}{5}{V_{ACDN}}\)
\(\frac{{{S_{CND}}}}{{{S_{CBD}}}} = \frac{{DN}}{{DB}} = \frac{1}{3} \Rightarrow \frac{{{V_{ACDN}}}}{{{V_{ABCD}}}} = \frac{1}{3} \Rightarrow {V_{APQN}} = \frac{2}{{15}}{V_{ABCD}}\)
\( \Rightarrow {V_{ABMNQ}} = {V_{ABMN}} + {V_{AMNP}} + {V_{ANPQ}} = \frac{2}{9}{V_{ABCD}} + \frac{2}{9}{V_{ABCD}} + \frac{2}{{15}}{V_{ABCD}} = \frac{{26}}{{45}}{V_{ABCD}}\)
Gọi \({V_1} = {V_{ABMNQ}},{V_2}\) là thể tích phần còn lại \( \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{19}}\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm cấp một và cấp hai trên khoảng \(\left( {a;b} \right)\) và \({{\rm{x}}_0} \in \left( {a;b} \right)\). Khẳng định nào sau đây sai?
Cho hàm số \(y = {x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m} \right)x + 4{m^2}\) có đồ thị \(\left( C \right)\) và đường thẳng \(d:y = 4{\rm{x}} + 8\). Đường thẳng \({\rm{d}}\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt có hoành độ \({{\rm{x}}_1},{x_2},{x_3}\). Tìm giá trị lớn nhất của biểu thức \(P = x_1^3 + x_2^3 + x_3^3\).
Cho hình hộp \(ABC{\rm{D}}.A'B'C'D'\) có đáy \(ABC{\rm{D}}\) là hình chữ nhật với \(AB = a,A{\rm{D}} = {\rm{a}}\sqrt 3 \). Hình chiếu vuông góc của \(A'\) lên \(\left( {ABC{\rm{D}}} \right)\) trùng với giao điểm của AC và BD. Tính khoảng cách từ B’ đến mặt phẳng \(\left( {A'B{\rm{D}}} \right)\).
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} - 4{\rm{x}} - 2y + 2{\rm{z}} - 19 = 0\) và mặt phẳng \(\left( P \right):2y - y - 2{\rm{z}} + m + 3 = 0\) với m là tham số. Gọi T là tập tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi bằng \(6\pi \). Tổng giá trị của tất cả các phần tử thuộc T bằng
Cho hình trụ có trục \(OO'\), chiều cao bằng a. Trên hai đường tròn đáy \(\left( O \right)\) và \(\left( {O'} \right)\) lần lượt lấy hai điểm A, B sao cho khoảng cách giữa hai đường thẳng AB và OO’ bằng \(\frac{a}{2}\). Góc giữa hai đường thẳng AB và OO’ bằng \(60^\circ \). Tính thể tích của khối trụ đã cho.
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng \(\left( { - 2019;2020} \right)\) để hàm số \(y = 2{{\rm{x}}^3} - 3\left( {2m + 1} \right){x^2} + 6m\left( {m + 1} \right) + 2019\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\)?
Cho khối chóp S.ABC, mặt bên SBC là tam giác vuông cân tại S có BC=2a, cạnh \({\rm{S}}A = a\sqrt 2 \) và tạo với mặt phẳng \(\left( {SBC} \right)\) một góc \(30^\circ \). Tính thể tích của khối chóp S.ABC.
Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{3}}}\left( {x - 1} \right) > - 3\) là
Trong không gian \({\rm{Ox}}yz\), cho hai điểm \(A\left( {1; - 1; - 3} \right)\), \(B\left( { - 2;2;1} \right)\). Vectơ \(\overrightarrow {AB} \) có tọa độ là
Biết đồ thị hàm số \(y = f\left( x \right)\) đối xứng với đồ thị hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\). Qua điểm \(I\left( {2;2} \right)\). Tính \(f\left( {4 - {a^{2018}}} \right)\).
Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình \({{\rm{x}}^2} - x + 2\left( {1 - x} \right)\sqrt {x - m} - m = 0\) có 3 nghiệm phân biệt là \(\left[ {a;b} \right)\). Tính \(a + b\).
Trong không gian \({\rm{Ox}}yz\), cho ba điểm \(A\left( {0;1; - 2} \right)\), \(B\left( {3;1;1} \right)\), \(C\left( { - 2;0;3} \right)\). Mặt phẳng \(\left( {ABC} \right)\) đi qua điểm nào sau đây?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2{\rm{x}} - y + 3 = 0\). Một vectơ pháp tuyến của \(\left( P \right)\) có tọa độ là
Trong không gian \({\rm{Ox}}yz\), cho mặt cầu \(\left( S \right):{x^2} + y^2 + {z^2} - 2{\rm{x}} + 2y - 4{\rm{z}} - 3 = 0\). Bán kính R của mặt cầu \(\left( S \right)\) bằng