Câu hỏi Đáp án 3 năm trước 54

Cho hình chóp S.ABCD có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).

A. \(\dfrac{{a\sqrt {21} }}{7}\)     

Đáp án chính xác ✅

B. \(\dfrac{{a\sqrt {15} }}{7}\)  

C. \(\dfrac{{a\sqrt {21} }}{3}\) 

D. \(\dfrac{{a\sqrt {15} }}{3}\) 

Lời giải của giáo viên

verified ToanVN.com

Ta có \(AB\parallel CD{\mkern 1mu} {\mkern 1mu} \left( {gt} \right) \Rightarrow AB\parallel \left( {SCD} \right)\) \( \Rightarrow d\left( {B;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\).

Trong \(\left( {ABCD} \right)\) kẻ \(AH \bot CD\).

Vì \(\angle BAD = {60^0} \Rightarrow \angle ADC = {120^0}\) nên điểm \(H\) nằm ngoài đoạn thẳng CD.

Trong \(\left( {SAH} \right)\) dựng \(AK \bot SH{\mkern 1mu} {\mkern 1mu} \left( {H \in SH} \right)\) ta có:

\(\left\{ {\begin{array}{*{20}{l}}{CD \bot AH}\\{CD \bot SA{\mkern 1mu} {\mkern 1mu} \left( {SA \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\) \( \Rightarrow CD \bot \left( {SAH} \right) \Rightarrow CD \bot AK\).

\(\left\{ {\begin{array}{*{20}{l}}{AK \bot SH}\\{AK \bot CD}\end{array}} \right. \Rightarrow AK \bot \left( {SCD} \right)\)\( \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = AK\).

Xét tam giác vuông AHD có \(\angle ADH = {180^0} - \angle ADC = {60^0}\), \(AD = a\) \( \Rightarrow AH = AD.sin{60^0} = \dfrac{{a\sqrt 3 }}{2}\).

Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AH\), suy ra tam giác SAH vuông tại \(A\), áp dụng hệ thức lượng trong tam giác vuông ta có: \(AK = \dfrac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }}\) \( = \dfrac{{a.\dfrac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \dfrac{{3{a^2}}}{4}} }} = \dfrac{{a\sqrt {21} }}{7}\).

Vậy \(d\left( {B;\left( {SCD} \right)} \right) = \dfrac{{a\sqrt {21} }}{7}\).

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ

 

Hàm số đồng biến trên khoảng:

Xem lời giải » 3 năm trước 70
Câu 2: Trắc nghiệm

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2{x^3} + 3{x^2} - 1\) trên đoạn\(\left[ { - 2; - \dfrac{1}{2}} \right]\). Tính \(P = M - m\). 

Xem lời giải » 3 năm trước 62
Câu 3: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\) là:

Xem lời giải » 3 năm trước 62
Câu 4: Trắc nghiệm

Cho hàm số \(y = f(x)\) có đạo hàm \(f'\left( x \right) = 2018{\left( {x - 1} \right)^{2017}}{\left( {x - 2} \right)^{2018}}{\left( {x - 3} \right)^{2019}}\). Tìm số điểm cực trị của \(f(x)\). 

Xem lời giải » 3 năm trước 61
Câu 5: Trắc nghiệm

Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:

Xem lời giải » 3 năm trước 60
Câu 6: Trắc nghiệm

Đồ thị hình bên là của hàm số nào?

 

Xem lời giải » 3 năm trước 60
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 3;4} \right]\) và có đồ thị như hình vẽ bên. Gọi \(M\) và \(m\) lần lượt là các giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 3;4} \right]\). Tính \(M + m\).

Xem lời giải » 3 năm trước 60
Câu 8: Trắc nghiệm

Cho hàm số \(y = a{x^4} + b{x^2} + c\)  có đồ thị như hình vẽ. Mệnh đề nào sau đây sai?

Xem lời giải » 3 năm trước 59
Câu 9: Trắc nghiệm

Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(SA = a\), \(AB = a\), \(AC = 2a\), \(BC = a\sqrt 3 .\) Tính thể tích khối chóp S.ABC. 

Xem lời giải » 3 năm trước 59
Câu 10: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ

Đồ thị hàm số \(y = \left| {f\left( x \right) - 2m} \right|\) có 5 điểm cực trị khi và chỉ khi

Xem lời giải » 3 năm trước 59
Câu 11: Trắc nghiệm

Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài MN nhỏ nhất:

Xem lời giải » 3 năm trước 59
Câu 12: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận

Xem lời giải » 3 năm trước 57
Câu 13: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là: 

Xem lời giải » 3 năm trước 57
Câu 14: Trắc nghiệm

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, \(AB = 2a,{\mkern 1mu} {\mkern 1mu} \widehat {BAC} = {60^0}\) và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng SB và mặt phẳng \(\left( {SAC} \right)\) bằng 

Xem lời giải » 3 năm trước 56
Câu 15: Trắc nghiệm

Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là : 

Xem lời giải » 3 năm trước 56

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »