Cho biết bảng biến thiên ở hình dưới là của một trong bốn hàm số được liệt kê dưới đây. Hãy tìm hàm số đó.
A. \(y = \dfrac{{ - 2x - 4}}{{x + 1}}\).
B. \(y = \dfrac{{x - 4}}{{2x + 2}}\).
C. \(y = \dfrac{{2 - x}}{{x + 1}}\).
D. \(y = \dfrac{{ - 2x + 3}}{{x + 1}}\).
Lời giải của giáo viên
ToanVN.com
Dựa vào BBT ta thấy hàm số có TXĐ:\(D = R\backslash \left\{ { - 1} \right\},\) hàm số nghịch biến trên từng khoảng xác định và có TCN là \(y = {\rm{\;}} - 2.\)
Ta thấy các hàm số ở cả 4 đáp án đều có TXĐ:\(D = R\backslash \left\{ { - 1} \right\}.\)
Tuy nhiên chỉ có đáp án A và đáp án D là đồ thị hàm số có TCN là đường \(y = {\rm{\;}} - 2.\)
+) Xét đáp án A: \(y = \dfrac{{ - 2x - 4}}{{x + 1}}\) có \(y' = \dfrac{{ - 2.1 + 4.1}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{2}{{{{\left( {x + 1} \right)}^2}}} > 0\;\forall x \ne {\rm{\;}} - 1 \Rightarrow \) hàm số đồng biến trên từng khoảng xác định \( \Rightarrow \) loại đáp án A.
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ
Hàm số đồng biến trên khoảng:
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2{x^3} + 3{x^2} - 1\) trên đoạn\(\left[ { - 2; - \dfrac{1}{2}} \right]\). Tính \(P = M - m\).
Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}\) là:
Cho hàm số \(y = f(x)\) có đạo hàm \(f'\left( x \right) = 2018{\left( {x - 1} \right)^{2017}}{\left( {x - 2} \right)^{2018}}{\left( {x - 3} \right)^{2019}}\). Tìm số điểm cực trị của \(f(x)\).
Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:
Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài MN nhỏ nhất:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ
Đồ thị hàm số \(y = \left| {f\left( x \right) - 2m} \right|\) có 5 điểm cực trị khi và chỉ khi
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 3;4} \right]\) và có đồ thị như hình vẽ bên. Gọi \(M\) và \(m\) lần lượt là các giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 3;4} \right]\). Tính \(M + m\).
Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(SA = a\), \(AB = a\), \(AC = 2a\), \(BC = a\sqrt 3 .\) Tính thể tích khối chóp S.ABC.
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ. Mệnh đề nào sau đây sai?
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, \(AB = 2a,{\mkern 1mu} {\mkern 1mu} \widehat {BAC} = {60^0}\) và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng SB và mặt phẳng \(\left( {SAC} \right)\) bằng
Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận
Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là :