Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:
lượt xem
lượt xem
Tìm họ nguyên hàm của hàm số $f(x) = {\tan ^5}x$.
lượt xem
Cho tích phân $I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x} = \dfrac{{m - \pi }}{{m + \pi }}$, giá trị của $m$ bằng :
lượt xem
Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y=\sqrt{x},\) trục hoành và đường thẳng \(x=9.\) Khi (H) quay quanh trục Ox tạo thành một khối tròn xoay có thể tích bằng:
lượt xem
lượt xem
Biết rằng \(\int\limits_0^1 {x\cos 2xdx} = \dfrac{1}{4}\left( {a\sin 2 + b\cos 2 + c} \right)\) với \(a,b,c \in Z\). Mệnh đề nào sau đây là đúng
lượt xem
Tích phân $\int\limits_{ - 1}^5 {\left| {{x^2} - 2x - 3} \right|} dx$ có giá trị bằng:
lượt xem
Tính \(I = \int {x{{\tan }^2}xdx} \) ta được:
lượt xem
Tính nguyên hàm $I = \int {\dfrac{{\ln \left( {lnx} \right)}}{x}{\rm{d}}x} $ được kết quả nào sau đây?
lượt xem
Tìm nguyên hàm của hàm số \(f(x) = \dfrac{x}{{\sqrt {3{x^2} + 2} }}\).
lượt xem
Tìm nguyên hàm $F(x)$ của hàm số \(f(x)=6x+\sin 3x\), biết \(F(0)=\dfrac{2}{3}.\)
lượt xem
Họ nguyên hàm của hàm số \(y=\cos 3x\) là
lượt xem
Nếu \(t = u\left( x \right)\) thì:
lượt xem
Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\) , trục hoành, hai đường thẳng \(x = - 2;x = 3\) có công thức tính là
lượt xem
Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} dx} \). Đặt \(u = 8 + \cos x\) thì kết quả nào sau đây là đúng?
lượt xem
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \sqrt {{{\ln }^2}x + 1} .\dfrac{{\ln x}}{x}\) thoả mãn \(F\left( 1 \right) = \dfrac{1}{3}\). Giá trị của \({F^2}\left( e \right)\) là
lượt xem
Nguyên hàm của hàm số \(f\left( x \right) = \sin x + \cos x\) là :
lượt xem
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chọn mệnh đề sai?
lượt xem
Tính \(I=\int\limits_{0}^{1}{{{e}^{3x}}dx}\).
lượt xem
lượt xem
Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) nếu:
lượt xem
Đặt \(F\left( x \right) = \int\limits_1^x {\sin tdt} \). Khi đó \(F'\left( x \right)\) là hàm số nào dưới đây?
lượt xem
Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:
lượt xem
Cho hình \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục hoành và hai đường thẳng \(x = 0,x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Ox\) được tính bởi:
lượt xem
Cho parabol \(\left( P \right)\) có đồ thị như hình vẽ:

Tính diện tích giới hạn bởi \(\left( P \right)\) và trục hoành.
lượt xem
Cho tích phân $I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x} = \dfrac{{m - \pi }}{{m + \pi }}$, giá trị của $m$ bằng :
lượt xem
Tìm thể tích \(V\) của vật tròn xoay sinh ra bởi đường tròn \({{x}^{2}}+{{\left( y-3 \right)}^{2}}=4\) khi quay quanh trục \(Ox.\)
lượt xem
lượt xem
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y=x{{e}^{x}},\ \ y=0,\ x=0,\ x=1\) xung quanh trục \(Ox\) là:
lượt xem
lượt xem
Kết quả tích phân \(I = \int\limits_1^e {\dfrac{{\ln x}}{{x\left( {{{\ln }^2}x + 1} \right)}}dx} \) có dạng \(I = a\ln 2 + b\) với \(a,b \in Q\) . Khẳng định nào sau đây là đúng?
lượt xem
Nếu \(\int\limits_{ - 2}^0 {\left( {4 - {e^{ -{\frac{x}{2}}}}} \right)dx} = K - 2e\) thì giá trị của \(K\) là
lượt xem
Cho \(F(x) = - \dfrac{1}{{3{x^3}}}\) là một nguyên hàm của hàm số \(\dfrac{{f(x)}}{x}\). Tìm nguyên hàm của hàm số \(f'(x)\ln x\).
lượt xem
Cho nguyên hàm \(\int {x\sin xdx} \). Nếu đặt \(\left\{ \begin{array}{l}u = x\\dv = \sin xdx\end{array} \right.\) thì:
lượt xem
Cho hàm số \(f\left( x \right) = {e^{ - 2018x + 2017}}\). Gọi \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) mà \(F\left( 1 \right) = e\). Chọn mệnh đề đúng:
lượt xem
lượt xem
Biết $\int {f\left( x \right){\mkern 1mu} {\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C} $ với $x \in \left( {\dfrac{1}{9}; + \infty } \right)$. Tìm khẳng định đúng trong các khẳng định sau.
lượt xem
Nếu \(t = u\left( x \right)\) thì:
lượt xem
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right) = {x^2} - 1\), trục hoành và hai đường thẳng \(x = - 1;x = - 3\) là:
lượt xem
Tích phân \(I = \int\limits_1^2 {{x^5}} dx\) có giá trị là:
lượt xem
Diện tích hình phẳng giới hạn bởi các đồ thị hàm số $y = {x^3} - x;y = 2x$ và các đường thẳng $x = - 1;x = 1$ được xác định bởi công thức:
lượt xem
Cho hai hàm số \(f,\,\,g\) liên tục trên đoạn $\left[ {a;b} \right]$ và số thực $k$ tùy ý. Trong các khẳng định sau, khẳng định nào sai ?
lượt xem
lượt xem
Cho hàm số \(y = f\left( x \right)\) là hàm số chẵn trên \(\mathbb{R}\) và \(a\) là một số thực dương. Chọn kết luận đúng:
lượt xem
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số\(f\left( x \right) = \dfrac{x}{{\sqrt {8 - {x^2}} }}\) thoả mãn \(F\left( 2 \right) = 0\). Khi đó phương trình \(F\left( x \right) = x\) có nghiệm là
lượt xem
Hàm số nào không là nguyên hàm của hàm số \(y = 3{x^4}\)?
lượt xem
Cho hàm số $f\left( x \right)$ liên tục trên $R$ và $\int\limits_{ - 2}^4 {f\left( x \right)} dx{\rm{ = 2}}$ . Mệnh đề nào sau đây là sai?
lượt xem
Chọn mệnh đề đúng:
lượt xem



