Cho đồ thị hàm số \(y=\frac{\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-3x-4}\) có tất cả bao nhiêu đường tiệm cận?
lượt xem
Có bao nhiêu số có ba chữ số đôi một khác nhau mà các chữ số đó thuộc tập hợp \(\left\{ 1;2;3;...;9 \right\}?\)
lượt xem
Cho hình chóp S.ABCD đáy là hình chữ nhật có \(AB=2a\sqrt{3},AD=2a.\) Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABD là:
lượt xem
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên.
.jpg.png)
Mệnh đề nào dưới đây đúng?
lượt xem
lượt xem
Một hộp đựng 40 tấm thẻ được đánh số thứ tự từ 1 đến 40. Rút ngẫu nhiên 10 tấm thẻ. Tính xác suất để lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó có đúng một thẻ mang số chia hết cho 6.
lượt xem
Cho hình chóp \(S.ABC\) có \(SA\bot \left( ABC \right)\) và \(AB\bot BC.\) Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?
lượt xem
lượt xem
lượt xem
Cho \(x,\,\,y,\,\,z>0;a,\,\,b,\,\,c>1\) và \({{a}^{x}}={{b}^{y}}={{c}^{z}}=\sqrt[3]{abc}\). Giá trị lớn nhất của biểu thức \(P=\frac{1}{x}+\frac{1}{y}-{{z}^{2}}+z\) thuộc khoảng nào dưới đây?
lượt xem
lượt xem
Cho \(f\left( x \right)\) là hàm số bậc 5. Hàm số \(y={f}'\left( x \right)\) có bảng biến thiên như hình vẽ sau
.png)
Số điểm cực trị của hàm số \(g\left( x \right)=f\left( x-2 \right)+{{x}^{3}}-6{{x}^{2}}+9x\) là
lượt xem
Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ . Biết \({{H}_{1}}\) có diện tích bằng 7, \({{H}_{2}}\) có diện tích bằng 3. Tính \(I=\int\limits_{-2}^{-1}{(2x+6)f({{x}^{2}}+6x+7)\text{d}x}\)
.jpg.png)
lượt xem
Có hai giá trị của tham số m để đồ thị hàm số \(y = \frac{{mx + \sqrt {{x^2} - 2x + 3} }}{{2x - 1}}\) có một tiệm cận ngang là y = 1. Tổng hai giá trị này bằng
lượt xem
lượt xem
Hàm số \(f(x)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e\) có đồ thị như hình dưới đây.
.jpg.png)
Số nghiệm của phương trình \(f\left( f\left( x \right) \right)+1=0\) là
lượt xem
Cho hàm số \(y=f(x)=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên dưới
.jpg.png)
Số điểm cực trị của hàm số \(g(x)=f({{x}^{3}}+f(x))\) là
lượt xem
Khối lăng trụ tam giác có độ dài các cạnh đáy lần lượt bằng \(13,14,15\). Cạnh bên tạo với mặt phẳng đáy một góc 300 và có chiều dài bằng 8. Thể tích khối lăng trụ đã cho bằng
lượt xem
Có bao nhiêu giá trị của tham số \(m\) để hàm số \(y={{x}^{3}}+\frac{1}{2}({{m}^{2}}-1){{x}^{2}}+1-m\) có điểm cực đại là \(x=-1\)?
lượt xem
Cho hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình bên. Trong các giá trị \(a, b, c, d\) có bao nhiêu giá trị dương?
.jpg.png)
lượt xem
Số giá trị nguyên của tham số thực \(m\) để hàm số \(y=\frac{mx-2}{-2x+m}\) nghịch biến trên khoảng \(\left( \frac{1}{2};\,+\infty \right)\) là
lượt xem
lượt xem
Cho lăng trụ đứng \(ABC.A'B'C'\) có \(AB=AC=B{B}'=a;\widehat{BAC}=120{}^\circ \). Gọi \(I\) là trung điểm của \(C{C}'\). Côsin của góc tạo bởi hai mặt phẳng \((ABC)\) và \((A{B}'I)\) bằng
lượt xem
Cho hàm số \(y=\frac{x+1}{{{x}^{2}}-2x-3}\). Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
lượt xem
lượt xem
Cho khối chóp \(S.ABCD\) có đáy là hình bình hành, thể tích bằng 1. Gọi \(M\) là trung điểm cạnh \(SA\), mặt phẳng chứa MC song song với BD chia khối chóp thành hai khối đa diện. Thể tích \(V\) khối đa diện chứa đỉnh A là
lượt xem
Cho hàm số \(y=f(x)\). Khẳng định nào sau đây là đúng?
lượt xem
lượt xem
Tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y=\frac{1+\sqrt{x+1}}{{{x}^{2}}-2x-m}\) có đúng hai tiệm cận đứng là
lượt xem
lượt xem
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,\) mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với \(\left( ABCD \right),\text{ }\widehat{SAB}={{60}^{0}},\text{ }SA=2a.\) Thể tích \(V\) của khối chóp \(S.ABCD\) là
lượt xem
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(B\) và \(AC=2a\) biết rằng \(\left( A'BC \right)\) hợp với đáy \(\left( ABC \right)\) một góc \({{45}^{0}}\).Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng
lượt xem
Thể tích khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng 2a bằng
lượt xem
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
.png)
Hàm số đạt cực tiểu tại điểm
lượt xem
Phương trình đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3-2x}{x+1}\) là
lượt xem
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau
.png)
Mệnh đề nào dưới đây đúng?
lượt xem
Kim tự tháp Kê-ốp ở Ai Cập được xây dựng vào khoảng \(2500\) năm trước Công nguyên. Kim tự tháp này có hình dạng là một khối chóp tứ giác đều có chiều cao \(147\) m, cạnh đáy dài \(230\) m. Thể tích \(V\) của khối chóp đó là
lượt xem
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
.jpg)
lượt xem
Có bao nhiêu giá trị nguyên dương của tham số \(m\) không vượt quá 2020 để hàm số \(y=-{{x}^{4}}+(m-5){{x}^{2}}+3m-1\) có ba điểm cực trị
lượt xem
Cho hàm số \(y=f(x)\) có đạo hàm \({f}'(x)=(x+1){{(x-2)}^{3}}{{(x-3)}^{4}}{{(x+5)}^{5}}\text{; }\forall x\in \mathbb{R}\) . Hỏi hàm số \(y=f(x)\) có mấy điểm cực trị?
lượt xem
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(1\). Cạnh bên \(SA\)vuông góc với mặt phẳng \(\left( ABCD \right)\)và \(SC=\sqrt{5}\). Thể tích \(V\) của khối chóp \(S.ABCD\)là
lượt xem
Cho đa giác đều có 10 cạnh. Số tam giác có 3 đỉnh là ba đỉnh của đa giác đều đã cho là
lượt xem
Cho khối lăng trụ \(ABC.{A}'{B}'{C}'\), mặt phẳng \((A{B}'{C}')\)chia khối lăng trụ \(ABC.{A}'{B}'{C}'\)thành
lượt xem
Cho hàm số \(y=\frac{x+m}{x+1}\) (\(m\) là tham số thực) thoả mãn \(\underset{\left[ 1;2 \right]}{\mathop{\min }}\,y+\underset{\left[ 1;2 \right]}{\mathop{\max }}\,y=\frac{9}{2}\). Mệnh đề nào dưới đây đúng?
lượt xem
Cho hàm\(y=f(x)\) liên tục trên đoạn \(\left[ -2;5 \right]\) và có đồ thị như hình vẽ bên. Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ -2;5 \right]\). Giá trị của \(M-m\) bằng
.jpg.png)
lượt xem
Cho hình chóp tứ giác \(S.ABCD\) có \(SA=SB=SC=SD=4\sqrt{11}\), đáy là \(ABCD\) là hình vuông cạnh 8. Thể tích \(V\) của khối chóp \(S.ABC\) là
lượt xem
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=5;{{u}_{5}}=13\). Công sai của cấp số cộng \(\left( {{u}_{n}} \right)\) bằng
lượt xem
Cho hàm số \(y=\frac{2x+1}{x-1}\). Mệnh đề đúng là
lượt xem
Cho hàm số \(y=f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 0 \right\}\) có bảng biến thiên như hình vẽ.
.png)
Số nghiệm của phương trình \(f(x)+3=0\) là
lượt xem
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
lượt xem
.png)