Cho hàm số \(f\left( x \right)={{x}^{3}}-3x+m\) ( với m là tham số thực). Biết \(\underset{\left( -\infty ;0 \right)}{\mathop{\max }}\,f\left( x \right)=5\) . Giá trị nhỏ nhất của hàm số \(y=f\left( x \right)\) trên \(\left( 0;+\infty \right)\) là
A. \(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=1.\)
B. \(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=2.\)
C. \(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=3.\)
D. \(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=-1.\)
Lời giải của giáo viên
ToanVN.com
Ta có \(f'\left( x \right) = 3{x^2} - 3 = 0 \Rightarrow \left[ \begin{array}{l} x = 1\\ x = - 1 \end{array} \right.\)
BBT
.png)
Vậy \(\underset{\left( -\infty ;0 \right)}{\mathop{\max }}\,f\left( x \right)=f\left( -1 \right)\Rightarrow f\left( -1 \right)=5\Leftrightarrow m+2=5\Leftrightarrow m=3.\)
\(\underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( x \right)=f\left( 1 \right)=m-2=3-2=1.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
.png)
Khẳng định nào sau đây đúng?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
.png)
Hàm số đạt cực tiểu tại điểm
Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?
Cho \(f\left( x \right)\) là hàm số bậc 5. Hàm số \(y={f}'\left( x \right)\) có bảng biến thiên như hình vẽ sau
.png)
Số điểm cực trị của hàm số \(g\left( x \right)=f\left( x-2 \right)+{{x}^{3}}-6{{x}^{2}}+9x\) là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
.jpg)
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Mặt phẳng \((A{B}'{C}')\) chia khối lăng trụ \(ABC.{A}'{B}'{C}'\) thành hai khối đa diện \(A{A}'{B}'{C}'\) và \(ABC{C}'{B}'\) có thể tích lần lượt là \({{V}_{1}},\,{{V}_{2}}\). Khẳng định nào sau đây đúng?
Cho hàm số \(y=f(x)=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên dưới
.jpg.png)
Số điểm cực trị của hàm số \(g(x)=f({{x}^{3}}+f(x))\) là
Cho hàm số \(y=\frac{x+1}{{{x}^{2}}-2x-3}\). Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau
.png)
Mệnh đề nào dưới đây đúng?
Phương trình đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3-2x}{x+1}\) là
Cho hàm số \(y=f(x)\). Khẳng định nào sau đây là đúng?
Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y={f}'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m\in \left( -10\,;\,10 \right)\) để hàm số \(y=f\left( 3x-1 \right)+{{x}^{3}}-3mx\) đồng biến trên khoảng \(\left( -2\,;\,1 \right)\)?
.png)
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,\) mặt bên \(SAB\) nằm trong mặt phẳng vuông góc với \(\left( ABCD \right),\text{ }\widehat{SAB}={{60}^{0}},\text{ }SA=2a.\) Thể tích \(V\) của khối chóp \(S.ABCD\) là


