Câu hỏi Đáp án 3 năm trước 39

Ông A dự định sử dụng hết \(8\text{ }{{m}^{2}}\)kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng ( các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (làm tròn đến hàng phần trăm)?

A. \(2.05\text{ }{{m}^{3}}\)

Đáp án chính xác ✅

B. \(1.02\text{ }{{m}^{3}}\)

C. \(1.45\text{ }{{m}^{3}}\)

D. \(0.73\text{ }{{m}^{3}}\)

Lời giải của giáo viên

verified ToanVN.com

Gọi chiều rộng, chiều cao của bể cá lần lượt là \(x,h\left( x;h>0 \right).\) Khi đó chiều dài là \(2x.\)

Tổng diện tích các mặt không kể nắp là \(2{{x}^{2}}+4xh+2xh=8\Leftrightarrow h=\frac{4-{{x}^{2}}}{3x}.\) Vì \(x,h>0\) nên \(x\in \left( 0;2 \right).\)

Thể tích của bể cá là \(V=2x.x.h=\frac{8x-2{{x}^{3}}}{3}.\)

Ta có \(V'=\frac{8}{3}-2{{x}^{2}},\) cho \(V'=0\Leftrightarrow \frac{8}{3}-2{{x}^{2}}=0\Rightarrow x=\frac{2\sqrt{3}}{3}.\)

Bảng biến thiên

Bể các có dung tích lớn nhất bằng \(\frac{32\sqrt{3}}{27}\approx 2,05.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số  \(f\left( x \right)={{x}^{3}}-3x+m\) ( với m là tham số thực). Biết \(\underset{\left( -\infty ;0 \right)}{\mathop{\max }}\,f\left( x \right)=5\) . Giá trị nhỏ nhất của hàm số \(y=f\left( x \right)\) trên \(\left( 0;+\infty  \right)\) là

Xem lời giải » 3 năm trước 184
Câu 2: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau

Khẳng định nào sau đây đúng?

Xem lời giải » 3 năm trước 166
Câu 3: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau

Hàm số đạt cực tiểu tại điểm

Xem lời giải » 3 năm trước 87
Câu 4: Trắc nghiệm

Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?

Xem lời giải » 3 năm trước 70
Câu 5: Trắc nghiệm

Cho \(f\left( x \right)\) là hàm số bậc 5. Hàm số \(y={f}'\left( x \right)\) có bảng biến thiên như hình vẽ sau

Số điểm cực trị của hàm số \(g\left( x \right)=f\left( x-2 \right)+{{x}^{3}}-6{{x}^{2}}+9x\) là

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

Xem lời giải » 3 năm trước 67
Câu 7: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Xem lời giải » 3 năm trước 65
Câu 8: Trắc nghiệm

Mặt phẳng \((A{B}'{C}')\) chia khối lăng trụ \(ABC.{A}'{B}'{C}'\) thành hai khối đa diện \(A{A}'{B}'{C}'\) và \(ABC{C}'{B}'\) có thể tích lần lượt là \({{V}_{1}},\,{{V}_{2}}\). Khẳng định nào sau đây đúng?

Xem lời giải » 3 năm trước 64
Câu 9: Trắc nghiệm

Cho hàm số \(y=f(x)=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên dưới

Số điểm cực trị của hàm số \(g(x)=f({{x}^{3}}+f(x))\) là

Xem lời giải » 3 năm trước 64
Câu 10: Trắc nghiệm

Cho hàm số \(y=\frac{2x+1}{x-1}\). Mệnh đề đúng là

Xem lời giải » 3 năm trước 64
Câu 11: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có bảng biến thiên của hàm số \(y={f}'\left( x \right)\) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số \(m\in \left( -10\,;\,10 \right)\) để hàm số \(y=f\left( 3x-1 \right)+{{x}^{3}}-3mx\) đồng biến trên khoảng \(\left( -2\,;\,1 \right)\)?

Xem lời giải » 3 năm trước 64
Câu 12: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau

Mệnh đề nào dưới đây đúng?

Xem lời giải » 3 năm trước 63
Câu 13: Trắc nghiệm

Phương trình đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3-2x}{x+1}\) là

Xem lời giải » 3 năm trước 63
Câu 14: Trắc nghiệm

Cho hàm số \(y=f(x)\). Khẳng định nào sau đây là đúng?

Xem lời giải » 3 năm trước 63
Câu 15: Trắc nghiệm

Cho hàm số  \(y=\frac{x+1}{{{x}^{2}}-2x-3}\). Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

Xem lời giải » 3 năm trước 63

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »