Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Nguyễn Thị Minh Khai
-
Hocon247
-
40 câu hỏi
-
60 phút
-
30 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Một chuyển động thẳng xác định bởi phương trình chuyển động \(S\left( t \right) = {t^3} + 3{t^2} + 5t + 2\), trong đó \(t\) tính bằng giây và \(S\left( t \right)\) tính bằng mét. Gia tốc của chuyển động khi \(t = 2\) bằng bao nhiêu?
Ta có:
\(\begin{array}{l}v\left( t \right) = S'\left( t \right) = 3{t^2} + 6t + 5\\a\left( t \right) = v'\left( t \right) = 6t + 6\end{array}\).
\( \Rightarrow a\left( 2 \right) = 6.2 + 6 = 18\,\,\left( {m/{s^2}} \right)\).
Tính giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {x + 3x - 2{x^3}} \right)\).
\(\mathop {\lim }\limits_{x \to - \infty } \left( {x + 3x - 2{x^3}} \right)\)\( = \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( {\frac{1}{{{x^2}}} + \frac{3}{{{x^2}}} - 2} \right)\) \( = + \infty \).
Tính giới hạn \(\lim \frac{{ - 4{n^3} - 5{n^2}}}{{{n^2} + 3{n^3}}}\).
\(\lim \frac{{ - 4{n^3} - 5{n^2}}}{{{n^2} + 3{n^3}}}\)\( = \lim \frac{{ - 4 - \frac{5}{n}}}{{\frac{1}{n} + 3}} = - \frac{4}{3}\).
Tính đạo hàm của hàm số \(y = {x^3}\sin x\).
\(y' = 3{x^2}\sin x + {x^3}\cos x\)\( = {x^2}\left( {3\sin x + x\cos x} \right)\) .
Cho hình chóp đều, chọn mệnh đề sai trong các mệnh đề sau:
Mệnh đề: Tất cả những cạnh bên của hình chóp đều bằng nhau là mệnh đề sai vì chóp đều cạnh bên và cạnh đáy của chóp có thể không bằng nhau.
Trong không gian, ba vectơ \(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c \) được gọi là đồng phẳng nếu và chỉ nếu:
Trong không gian, ba vectơ \(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c \) được gọi là đồng phẳng nếu và chỉ nếu chúng có giá song song với một mặt phẳng nào đó.
Cho hàm số \(y = \frac{1}{4}{x^4} - 2{x^2} - 5\). Giải phương trình \(y'' = - 1\), khi đó ta được kết quả là:
\(\begin{array}{l}y' = {x^3} - 4x \Rightarrow y'' = 3{x^2} - 4\\y'' = - 1 \Leftrightarrow 3{x^2} = 3 \Leftrightarrow x = \pm 1\end{array}\)
Xét trong không gian, trong các mệnh đề sau đây, mệnh đề nào đúng?
Mệnh đề đúng là: Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
Cho hàm \(f\left( x \right)\) liên tục trên khoảng \(\left( {a;b} \right)\), \({x_0} \in \left( {a;b} \right)\). Tính\(f'\left( {{x_0}} \right)\) bằng định nghĩa ta cần tính :
Tính\(f'\left( {{x_0}} \right)\) bằng định nghĩa ta cần tính \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}\).
Chọn khẳng định không đúng trong các khẳng định sau:
Hàm số \(y = \frac{{3x - 5}}{{x + 3}}\) có TXĐ \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\)
\( \Rightarrow \) Hàm số không liên tục trên \(\mathbb{R}\).
Vậy khẳng định B sai.
Cho hình lập phương \(ABCD.EFGH\)(tham khảo hình vẽ bên) có cạnh bằng 5 cm. Tính khoảng cách giữa 2 đường thẳng chéo nhau AD và HF ta được
.png)
Ta có \(HD \bot \left( {ABCD} \right) \Rightarrow HD \bot AB\)
\(HD \bot \left( {EFGH} \right) \Rightarrow HD \bot HF\)
\( \Rightarrow HD\) là đoạn vuông góc chung của \(AD\) và \(HF\)\( \Rightarrow d\left( {AD;HF} \right) = HD = 5\).
Tính đạo hàm của hàm số \(y = 2\sin x + 2020.\)
Ta có : \(y' = 2\cos x\).
Trong các giới hạn dãy số dưới đây, giới hạn có kết quả đúng là:
Ta có: \(\lim \,( - 3{n^4} + 3)\)\( = \lim {n^4}\left( { - 3 + \frac{3}{{{n^4}}}} \right) = - \infty \)
Cho hàm số \(y = {x^3} - 3x + 1.\) Tìm \(dy.\)
\(dy = \left( {{x^3} - 3x + 1} \right)'dx\)\( = \left( {3{x^2} - 3} \right)dx\).
Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} + 3x - 1}}{{x + 1}}\). Kết quả đúng là:
Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} + 3x - 1}}{{x + 1}}\)\( = \frac{{{{2.1}^2} + 3.1 - 1}}{{1 + 1}} = \frac{4}{2} = 2\).
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc (xem hình vẽ). Chọn khẳng định sai khi nói về hai mặt phẳng vuông góc.
.png)
Ta có \(\left\{ \begin{array}{l}OC \bot OA\\OC \bot OB\end{array} \right. \Rightarrow OC \bot \left( {OAB} \right)\).
Mà \(\left\{ \begin{array}{l}OC \subset \left( {OAC} \right)\\OC \subset \left( {OBC} \right)\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}\left( {OAB} \right) \bot \left( {OAC} \right)\\\left( {OAB} \right) \bot \left( {OBC} \right)\end{array} \right.\)
\( \Rightarrow B,D\) đúng.
Ta có \(\left\{ \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right. \Rightarrow OA \bot \left( {OBC} \right)\).
Mà \(OA \subset \left( {OAC} \right)\)\( \Rightarrow \left( {OAC} \right) \bot \left( {OBC} \right)\) \( \Rightarrow C\) đúng.
Container của xe tải dùng để chở hàng hóa thường có dạng hình hộp chữ nhật. Chúng ta mô hình hóa thùng container bằng hình hộp chữ nhật \(MNPQ.EFGH\) (tham khảo hình vẽ bên dưới). Chọn khẳng định sai khi nói về hai đường thẳng vuông góc trong các khẳng định sau.
Ta có \(HE \bot \left( {MNEF} \right) \Rightarrow \left\{ \begin{array}{l}HE \bot NF\\HE \bot MN\end{array} \right.\)
\(HE \bot \left( {GHPQ} \right) \Rightarrow HE \bot GP\).
Vậy chỉ có khẳng định D sai.
Cho hàm số\(f\left( x \right) = {x^3} - 3{x^2} + 1\). Tính \(f''\left( x \right)\).
Ta có \(f'\left( x \right) = 3{x^2} - 6x\)\( \Rightarrow f''\left( x \right) = 6x - 6\)
Tính đạo hàm của hàm số \(f(x) = 3{x^3}\).
\(f'\left( x \right) = 3.3{x^2} = 9{x^2}\).
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(\Delta A'B'C'\) vuông tại \(B'\) (xem hình vẽ). Hỏi đường thẳng \(B'C'\) vuông góc với mặt phẳng nào được liệt kê ở bốn phương án dưới đây ?
.png.jpg)
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(\Delta A'B'C'\) vuông tại \(B'\) (xem hình vẽ). Hỏi đường thẳng \(B'C'\) vuông góc với mặt phẳng nào được liệt kê ở bốn phương án dưới đây ?
Cho hình hộp \(ABCD.EFGH\) (tham khảo hình vẽ). Tính tổng ba véctơ \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AE} \) ta được
.png)
\(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AE} \)\( = \overrightarrow {AC} + \overrightarrow {AE} = \overrightarrow {AG} \).
Vi phân của hàm số\(y\,\, = \,\cos 2x + \cot x\) là:
\(dy = \left( {\cos 2x + \cot x} \right)'dx\)\( = \left( { - 2\sin 2x - \frac{1}{{{{\sin }^2}x}}} \right)dx\) .
Chọn kết quả đúng trong các giới hạn dưới đây:
\(\lim \frac{{ - 2{n^2} - 1}}{{5{n^2} - 8}}\)\( = \lim \frac{{ - 2 - \frac{1}{{{n^2}}}}}{{5 - \frac{8}{{{n^2}}}}} = - \frac{2}{5}\)
\( \Rightarrow \) Đáp án C đúng.
Tính \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + x - 12}}{{x - 3}}\). Kết quả đúng là:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + x - 12}}{{x - 3}}\\ = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {x + 4} \right)}}{{x - 3}}\\ = \mathop {\lim }\limits_{x \to 3} \left( {x + 4} \right) = 7\end{array}\).
Cho đường thẳng d vuông góc với mặt phẳng \((\alpha )\) và đường thẳng \(\Delta \) khác d. Chọn khẳng định sai trong các khẳng định sau.
Khẳng định sai là B.
Chọn khẳng định sai trong các khẳng định sau ?
Hai mặt phẳng cắt nhau thì không vuông góc là khẳng định sai.
Cho hàm số\(f\left( x \right) = {\left( {2x + 1} \right)^{12}}\). Tính \(f''\left( 0 \right)\).
Ta có
\(\begin{array}{l}f'\left( x \right) = 12{\left( {2x + 1} \right)^{11}}\left( {2x + 1} \right)'\\ = 24{\left( {2x + 1} \right)^{11}}\\f''\left( x \right) = 24.11{\left( {2x + 1} \right)^{10}}.\left( {2x + 1} \right)'\\ = 528{\left( {2x + 1} \right)^{10}}\\ \Rightarrow f''\left( 0 \right) = {528.1^{10}} = 528\end{array}\)
Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) tại điểm có hoành độ \({x_0} = 0\) là:
TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\} \Rightarrow {x_0} = 0 \in D\).
Ta có: \(y' = \frac{{1 + 1}}{{{{\left( {x + 1} \right)}^2}}} = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\).
\( \Rightarrow \) Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) tại điểm có hoành độ \({x_0} = 0\) là: \(k = \frac{2}{{{{\left( {0 + 1} \right)}^2}}} = 2\).
Tìm số gia \(\Delta y\) của hàm số \(y = {x^2}\) biết \({x_0} = 3\) và \(\Delta x = - 1.\)
Đặt \(y = {x^2} = f\left( x \right)\) ta có:
\(\begin{array}{l}\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\\ = f\left( {3 - 1} \right) - f\left( 3 \right)\\ = f\left( 2 \right) - f\left( 3 \right) = {2^2} - {3^2}\\ = - 5\end{array}\)
Tính \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 4} + x} \right)\). Kết quả đúng là:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 4} + x} \right)\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left( {\sqrt {{x^2} + 4} + x} \right)\left( {\sqrt {{x^2} + 4} - x} \right)}}{{\sqrt {{x^2} + 4} - x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 4 - {x^2}}}{{\sqrt {{x^2} + 4} - x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{4}{{\sqrt {{x^2} + 4} - x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{4}{x}}}{{ - \sqrt {1 + \frac{4}{{{x^2}}}} - 1}}\\ = \frac{0}{{ - 2}} = 0\end{array}\)
Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng 6 cm. Tính khoảng cách từ điểm B đến mặt phẳng \((SCD)\)
.png)
Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).
Gọi \(M\) là trung điểm của \(CD\) ta có \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right)\).
Trong \(\left( {SOM} \right)\) kẻ \(OH \bot SM\) ta có
\(\left\{ \begin{array}{l}OH \bot SM\\OH \bot CD\end{array} \right. \Rightarrow OH \bot \left( {SCD} \right)\)\( \Rightarrow d\left( {O;\left( {SCD} \right)} \right) = OH\).
Ta có \(BO \cap \left( {SCD} \right) = D\)\( \Rightarrow \frac{{d\left( {B;\left( {SCD} \right)} \right)}}{{d\left( {O;\left( {SCD} \right)} \right)}} = \frac{{BD}}{{OD}} = 2\).
\( \Rightarrow d\left( {B;\left( {SCD} \right)} \right)\)\( = 2d\left( {O;\left( {SCD} \right)} \right) = 2OH\).
Ta có \(OM\) là đường trung bình của \(\Delta ACD\)
\( \Rightarrow OM = \frac{1}{2}AD = 3\,\,\left( {cm} \right)\).
Trong \(\Delta SOC\) có: \(SO = \sqrt {S{C^2} - O{C^2}} \)\( = \sqrt {{6^2} - {{\left( {\frac{{6\sqrt 2 }}{2}} \right)}^2}} = 3\sqrt 2 \) (cm).
Áp dụng hệ thức lượng trong tam giác vuông \(SOM\) ta có: \(OH = \frac{{SO.OM}}{{\sqrt {S{O^2} + O{M^2}} }}\)\( = \frac{{3\sqrt 2 .3}}{{\sqrt {18 + 9} }} = \sqrt 6 \).
Vậy \(d\left( {B;\left( {SCD} \right)} \right) = 2\sqrt 6 \,\,\left( {cm} \right)\).
Cho hàm số \(y = \frac{{{x^2} + 3}}{{x + 1}}\). Nếu\(y' > 0\) thì x thuộc tập hợp nào sau đây:
Ta có
\(\begin{array}{l}y' = \frac{{2x\left( {x + 1} \right) - \left( {{x^2} + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ = \frac{{2{x^2} + 2x - {x^2} - 3}}{{{{\left( {x + 1} \right)}^2}}}\\ = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\end{array}\)
\(\begin{array}{l}y' > 0 \Leftrightarrow \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}} > 0\\ \Leftrightarrow {x^2} + 2x - 3 > 0\\ \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( {1; + \infty } \right)\end{array}\).
Chọn kết quả sai trong các giới hạn dưới đây:
\(\begin{array}{l} + )\,\,\lim \frac{{{{5.4}^n} + {{7.2}^n} - {3^n}}}{{{{4.4}^n} - {{2.3}^n}}}\\ = \lim \frac{{5 + 7.{{\left( {\frac{2}{4}} \right)}^n} - {{\left( {\frac{3}{4}} \right)}^n}}}{{4 - 2{{\left( {\frac{3}{4}} \right)}^n}}} = \frac{5}{4}\\ + )\,\,\lim \frac{{\sqrt {9{n^2} + 4} - n}}{{{n^2}}}\\ = \lim \frac{{\sqrt {\frac{9}{{{n^2}}} + \frac{4}{{{n^4}}}} - \frac{1}{n}}}{1} = 0\\ + )\,\,\lim \frac{{{3^n} + {{4.5}^n} - {8^n}}}{{{{3.8}^n} + {{2.6}^n}}}\\ = \lim \frac{{{{\left( {\frac{3}{8}} \right)}^n} + 4{{\left( {\frac{5}{8}} \right)}^n} - 1}}{{3 + 2{{\left( {\frac{6}{8}} \right)}^n}}}\\ = - \frac{1}{3}\\ + )\,\,\lim \frac{{\sqrt {{n^2} + 4} + n}}{n}\\ = \lim \frac{{\sqrt {1 + \frac{4}{{{n^2}}}} + 1}}{1} = 1\end{array}\)
Cho hàm số \(y = \cos \sqrt {2{x^2} - x + 7} \). Khi đó \(y'\) bằng
\(\begin{array}{l}y' = - \left( {\sqrt {2{x^2} - x + 7} } \right)'sin\sqrt {2{x^2} - x + 7} \\y' = - \frac{{\left( {2{x^2} - x + 7} \right)'}}{{2\sqrt {2{x^2} - x + 7} }}sin\sqrt {2{x^2} - x + 7} \\y' = \frac{{ - 4x + 1}}{{2\sqrt {2{x^2} - x + 7} }}sin\sqrt {2{x^2} - x + 7} \\y' = \frac{{\left( {1 - 4x} \right)sin\sqrt {2{x^2} - x + 7} }}{{2\sqrt {2{x^2} - x + 7} }}\end{array}\)
Cho hình chóp tam giác \(S.ABC\) có mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với mặt đáy. Biết góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}\) cạnh \(AB = 4cm;\,\,BC = 6cm;\,\,CA = 8cm\). Tính độ dài cạnh SA của hình chóp.
.png)
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAC} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {SAC} \right) = SA\end{array} \right. \)\(\Rightarrow SA \bot \left( {ABC} \right)\).
Xét tam giác \(ABC\) ta có
\(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}}\)\( = \frac{{{4^2} + {6^2} - {8^2}}}{{2.4.6}} = - \frac{1}{4} < 0\)
\( \Rightarrow \widehat B > {90^0}\)
Trong \(\left( {ABC} \right)\) dựng \(AH \bot BC\,\,\left( {H \in BC} \right)\) ta có:
\(\left\{ \begin{array}{l}BC \bot AH\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAH} \right)\)\( \Rightarrow BC \bot SH\).
\(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SH \bot \left( {ABC} \right)\\\left( {ABC} \right) \supset AH \bot \left( {ABC} \right)\end{array} \right.\)
\( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right)\) \( = \angle \left( {SH;AH} \right) = \angle SHA = {60^0}\) .
Xét tam giác vuông \(AHB\) có \(BH = AB.\cos \angle ABH\)\( = 4.\frac{1}{4} = 1\).
\( \Rightarrow AH = \sqrt {A{B^2} - B{H^2}} \)\( = \sqrt {{4^2} - {1^2}} = \sqrt {15} \).
Xét tam giác vuông \(SAH\) có : \(SA = AH.\tan {60^0}\)\( = \sqrt {15} .\sqrt 3 = 3\sqrt 5 \).
Gọi (C) là đồ thị của hàm số\(y = {(x - 1)^3}\). Tiếp tuyến của (C) song song với đường thẳng \(\Delta :12x - y - 2018 = 0\) có phương trình là:
Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = {\left( {x - 1} \right)^3}\) tại điểm có hoành độ \(x = {x_0}\) là \(k = 3{\left( {{x_0} - 1} \right)^2}\).
Tiếp tuyến song song với đường thẳng \(\Delta :\,\,12x - y - 2018 = 0\)\( \Leftrightarrow y = 12x - 2018\) \( \Rightarrow k = 12\).
\(\begin{array}{l} \Rightarrow 3{\left( {{x_0} - 1} \right)^2} = 12\\ \Leftrightarrow {\left( {{x_0} - 1} \right)^2} = 4\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} - 1 = 2\\{x_0} - 1 = - 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} = - 1\end{array} \right.\end{array}\).
Với \({x_0} = 3\), phương trình tiếp tuyến cần tìm là : \(y = 12\left( {x - 3} \right) + 8\)\( = 12x - 28\,\,\,\left( {tm} \right)\) .
Với \({x_0} = - 1\), phương trình tiếp tuyến cần tìm là : \(y = 12\left( {x + 1} \right) - 8\)\( = 12x + 4\,\,\,\left( {tm} \right)\) .
Cho hàm số \(f(x) = \left\{ \begin{array}{l}2b{x^2} - 4\,\,\,khi\,\,\,x \le 3\\\,\,\,\,\,5\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,\,x > 3\end{array} \right.\). Hàm số liên tục trên \(\mathbb{R}\) khi giá trị của b là:
Hàm số liên tục trên các khoảng \(\left( { - \infty ;3} \right)\) và \(\left( {3; + \infty } \right)\). Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số phải liên tục tại \(x = 3\).
Ta có
\(\begin{array}{l} + )\,\,\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} 5 = 5\\ + )\,\,\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left( {2b{x^2} - 4} \right)\\ = 18b - 4\\ + )\,\,f\left( 3 \right) = 18b - 4\end{array}\)
Hàm số liên tục tại \(x = 3\)\( \Leftrightarrow 18b - 4 = 5 \Leftrightarrow b = \frac{1}{2}\).
Vậy hàm số đã cho liên tục trên \(\mathbb{R}\)\( \Leftrightarrow b = \frac{1}{2}\).
Tính giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{x + 2}}.\)
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{1}{x}}}{{1 + \frac{2}{x}}} = \frac{1}{1} = 1\).
Tính giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + \sqrt {{x^2} + 1} }}{{x + 2}}.\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \frac{{x + \sqrt {{x^2} + 1} }}{{x + 2}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{2}{x}}}\\ = \frac{{1 + 1}}{1} = 2\end{array}\).
\(\mathop {\lim }\limits_{x \to 1} \frac{{x + \sqrt {{x^2} + 1} }}{{x + 1}} = a + b\sqrt 2 \,\,\left( {a,b \in \mathbb{Q}} \right).\) Tính \(a + b\).
Hàm số \(y = \frac{{x + \sqrt {{x^2} + 1} }}{{x + 1}}\) có TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
\( \Rightarrow \) Hàm số liên tục tại \(x = 1\).
\(\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{x + \sqrt {{x^2} + 1} }}{{x + 1}}\\ = \frac{{1 + \sqrt {{1^2} + 1} }}{{1 + 1}}\\ = \frac{{1 + \sqrt 2 }}{2} = \frac{1}{2} + \frac{1}{2}\sqrt 2 \\ \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = \frac{1}{2}\end{array} \right.\\ \Rightarrow a + b = \frac{1}{2} + \frac{1}{2} = 1\end{array}\)
