Cho hàm số \(f(x) = \left\{ \begin{array}{l}2b{x^2} - 4\,\,\,khi\,\,\,x \le 3\\\,\,\,\,\,5\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,\,x > 3\end{array} \right.\). Hàm số liên tục trên \(\mathbb{R}\) khi giá trị của b là:
A. \(\frac{1}{{18}}\)
B. 2
C. 18
D. \(\frac{1}{2}\)
Lời giải của giáo viên
ToanVN.com
Hàm số liên tục trên các khoảng \(\left( { - \infty ;3} \right)\) và \(\left( {3; + \infty } \right)\). Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số phải liên tục tại \(x = 3\).
Ta có
\(\begin{array}{l} + )\,\,\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} 5 = 5\\ + )\,\,\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left( {2b{x^2} - 4} \right)\\ = 18b - 4\\ + )\,\,f\left( 3 \right) = 18b - 4\end{array}\)
Hàm số liên tục tại \(x = 3\)\( \Leftrightarrow 18b - 4 = 5 \Leftrightarrow b = \frac{1}{2}\).
Vậy hàm số đã cho liên tục trên \(\mathbb{R}\)\( \Leftrightarrow b = \frac{1}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{1}{4}{x^4} - 2{x^2} - 5\). Giải phương trình \(y'' = - 1\), khi đó ta được kết quả là:
Cho hàm số \(y = \frac{{{x^2} + 3}}{{x + 1}}\). Nếu\(y' > 0\) thì x thuộc tập hợp nào sau đây:
Trong không gian, ba vectơ \(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c \) được gọi là đồng phẳng nếu và chỉ nếu:
Một chuyển động thẳng xác định bởi phương trình chuyển động \(S\left( t \right) = {t^3} + 3{t^2} + 5t + 2\), trong đó \(t\) tính bằng giây và \(S\left( t \right)\) tính bằng mét. Gia tốc của chuyển động khi \(t = 2\) bằng bao nhiêu?
Cho hình lập phương \(ABCD.EFGH\)(tham khảo hình vẽ bên) có cạnh bằng 5 cm. Tính khoảng cách giữa 2 đường thẳng chéo nhau AD và HF ta được
.png)
Cho hàm số \(y = \cos \sqrt {2{x^2} - x + 7} \). Khi đó \(y'\) bằng
Cho hàm số\(f\left( x \right) = {\left( {2x + 1} \right)^{12}}\). Tính \(f''\left( 0 \right)\).
Cho hình hộp \(ABCD.EFGH\) (tham khảo hình vẽ). Tính tổng ba véctơ \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AE} \) ta được
.png)
Cho hàm số\(f\left( x \right) = {x^3} - 3{x^2} + 1\). Tính \(f''\left( x \right)\).
Trong các giới hạn dãy số dưới đây, giới hạn có kết quả đúng là:
Cho hình chóp đều, chọn mệnh đề sai trong các mệnh đề sau:
