Đề thi giữa HK1 môn Toán 11 năm 2021-2022 - Trường THPT Nguyễn Hiền
-
Hocon247
-
40 câu hỏi
-
60 phút
-
30 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Tập giá trị của hàm số \(y = \sqrt 3 \sin 2x - cos2x\) là:
Ta có: \(y = \sqrt 3 \sin 2x - \cos 2x \)
\(\begin{array}{l}
= 2\left( {\frac{{\sqrt 3 }}{2}\sin 2x - \frac{1}{2}\cos 2x} \right)\\
= 2\left( {\cos \frac{\pi }{6}\sin 2x - \sin \frac{\pi }{6}\cos 2x} \right)
\end{array}\)
\(= 2\sin \left( {2x - \dfrac{\pi }{6}} \right)\)
\(\Rightarrow y \in \left[ { - 2;2} \right]\)
Chọn đáp án B.
Phương trình \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) có các họ nghiệm là:
Ta có: \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) \( \Leftrightarrow \sin \left( {2x + \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\)
\( \Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi }{4} = \dfrac{\pi }{6} + k2\pi \\2x + \dfrac{\pi }{4} = \pi - \dfrac{\pi }{6} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{{24}} + k\pi \\x = \dfrac{{7\pi }}{{24}} + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án D.
Hàm số \(y = \sin 3x.\cos x\) là một hàm số tuần hoàn có chu kì là
Ta có: \(y = \sin 3x.\cos x = \dfrac{1}{2}\left( {\sin 4x + \sin 2x} \right)\)
Hàm số \(y = \sin 4x\) tuần hoàn với chu kì \({T_1} = \frac{{2\pi }}{4} = \frac{\pi }{2}\)
Hàm số \(y = \sin 2x\) tuần hoàn với chu kì \({T_2} = \frac{{2\pi }}{2} = \pi \)
Vậy hàm số \(y = \frac{1}{2}\left( {\sin 4x + \sin 2x} \right)\) tuần hoàn với chu kì \(T = BCNN\left( {\frac{\pi }{2};\pi } \right) = \pi \)
Chọn đáp án A.
Cho hình bình hành \(ABCD\). Ảnh của điểm \(D\) qua phép tịnh tiến theo véctơ \(\overrightarrow {AB} \) là:
Ta có: \(\overrightarrow {DC} = \overrightarrow {AB} \Rightarrow {T_{\overrightarrow {AB} }}\left( D \right) = C\)
Chọn B
Phép tịnh tiến theo \(\overrightarrow v = \left( {1;0} \right)\) biến điểm \(A\left( { - 2;3} \right)\)thành
\(A' = {T_{\overrightarrow v }}\left( A \right)\) \( \Rightarrow \left\{ \begin{array}{l}x' = - 2 + 1 = - 1\\y' = 3 + 0 = 3\end{array} \right.\) \( \Rightarrow A'\left( { - 1;3} \right)\)
Chọn C
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số \(y = {\sin ^4}x - 2{\cos ^2}x + 1\)
Ta có: \(y = {\sin ^4}x - 2{\cos ^2}x + 1 \) \(= {\sin ^4}x - 2\left( {1 - {{\sin }^2}x} \right) + 1\)
\( = {\sin ^4}x + 2{\sin ^2}x - 1 \) \(= {\left( {{{\sin }^2}x + 1} \right)^2} - 2\)
\(\begin{array}{l}
0 \le {\sin ^2}x \le 1\\
\Rightarrow 1 \le {\sin ^2}x + 1 \le 2\\
\Rightarrow 1 \le {\left( {{{\sin }^2}x + 1} \right)^2} \le 4\\
\Rightarrow - 1 \le {\left( {{{\sin }^2}x + 1} \right)^2} - 2 \le 2
\end{array}\)
\( \Rightarrow - 1 \le y \le 2\)
Chọn đáp án D.
Tập xác định của hàm số \(y = \sqrt {1 - \cos 2017x} \) là
Điều kiện xác định: \(1 - \cos 2017x \ge 0 \Leftrightarrow \cos 2017x \le 1 \) luôn đúng với mọi \( x \in \mathbb{R}\)
Vậy TXĐ: D=R.
Chọn đáp án B.
Tìm chu kì T của hàm số \(y = \cot 3x + \tan x\) là
Chu kì của hàm số \(y = \cot 3x + \tan x\) là \(T = \pi \)
Chọn đáp án A.
Trong mặt phẳng tọa độ \(Oxy\), tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
Lấy \(M\left( {x;y} \right)\) bất kì thuộc \(\Delta \).
\(M' = {T_{\overrightarrow v }}\left( M \right) \Rightarrow \left\{ \begin{array}{l}x' = x + 1\\y' = y - 1\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}x = x' - 1\\y = y' + 1\end{array} \right.\)
Thay \(\left\{ \begin{array}{l}x = x' - 1\\y = y' + 1\end{array} \right.\) vào phương trình \(\Delta \) ta được:
\(\begin{array}{l}\left( {x' - 1} \right) + 2\left( {y' + 1} \right) - 1 = 0\\ \Leftrightarrow x' + 2y' = 0\\ \Rightarrow M' \in \Delta ':x + 2y = 0\end{array}\)
Chọn B
Cho phép quay \({Q_{\left( {O,\;\varphi } \right)}}\) biến điểm \(A\) thành điểm \(A'\) và biến điểm \(M\) thành điểm \(M'\). Mệnh đề nào sau đây là sai?
Đáp án A sai vì hai véc tơ \(\overrightarrow {AM} \) và \(\overrightarrow {A'M'} \) chưa chắc cùng hướng, chúng chỉ có cùng độ dài.
Chọn A
Trong mặt phẳng với hệ tọa độ Oxy , cho điểm \(A(1;2)\) và một góc \(\alpha = {90^0}\). Tìm trong các điểm sau điểm nào là ảnh của A qua qua phép quay tâm O góc quay \(\alpha = {90^0}\)
\(A' = {Q_{\left( {O;{{90}^0}} \right)}}\left( A \right)\) \( \Rightarrow \left\{ \begin{array}{l}x' = - y = - 2\\y' = x = 1\end{array} \right. \Rightarrow A'\left( { - 2;1} \right)\)
Chọn B
Cho hàm số \(f\left( x \right) = \left| x \right|\sin x.\) Phát biểu nào sau đây là đúng về hàm số đã cho?
Hàm số \(y = \left| x \right|\sin x\) có:
\(\begin{array}{l}y\left( { - x} \right) = \left| { - x} \right|\sin \left( { - x} \right)\\ = - \left| x \right|\sin x = - y\left( x \right)\end{array}\)
Nên là hàm số lẻ.
Do đó đồ thị hàm số nhận gốc \(O\) làm tâm đối xứng.
Chọn đáp án B.
Trong các phương trình sau đây,phương trình nào có tập nghiệm là \(x = - \dfrac{\pi }{3} + k2\pi \) và \(x = \dfrac{{4\pi }}{3} + k2\pi ,\,\,\,(k \in \mathbb{Z})\)
Ta có: \(\sin x = - \dfrac{{\sqrt 3 }}{2} \) \(\Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{3} + k2\pi \\x = \dfrac{{4\pi }}{3} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án C.
Phương trình \(\tan \left( {3x - {{15}^0}} \right) = \sqrt 3 \) có các nghiệm là:
Ta có: \(\tan \left( {3x - {{15}^ \circ }} \right) = \sqrt 3\) \( \Leftrightarrow \tan \left( {3x - {{15}^ \circ }} \right) = \tan {60^ \circ }\)
\( \Leftrightarrow 3x - {15^ \circ } = {60^ \circ } + k{180^ \circ }\)
\( \Leftrightarrow x = {25^ \circ } + k{60^ \circ }\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đán án D.
Cho tam giác đều \(ABC\) có tâm là điểm \(O\). Phép quay tâm \(O\), góc quay φ biến tam giác ABC thành chính nó. Khi đó đó một góc φ thỏa mãn là
Ta có:
\(\begin{array}{l}{Q_{\left( {O,{{120}^0}} \right)}}\left( A \right) = B\\{Q_{\left( {O,{{120}^0}} \right)}}\left( B \right) = C\\{Q_{\left( {O,{{120}^0}} \right)}}\left( C \right) = A\\ \Rightarrow {Q_{\left( {O,{{120}^0}} \right)}}\left( {ABC} \right) = BCA\end{array}\)
Chọn C
Cho tam giác \(ABC\), với \(G\) là trọng tâm tam giác, \(D\) là trung điểm của BC. Phép vị tự tâm \(A\) biến điểm \(G\) thành điểm \(D\). Khi đó phép vị tự có tỉ số \(k\) là
G là trọng tâm tam giác nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AD} \Rightarrow \overrightarrow {AD} = \frac{3}{2}\overrightarrow {AG} \)
\( \Rightarrow {V_{\left( {A;\frac{3}{2}} \right)}}\left( G \right) = D\)
Chọn A
Trong mặt phẳng tọa độ\(Oxy\), cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\) . Ảnh của \(\left( {\rm{C}} \right)\) qua phép vị tự tâm \(I = \left( {2; - 2} \right)\) tỉ số vị tự bằng \(3\) là đường tròn có phương trình
(C ) có tâm \(J\left( {1;2} \right)\) và bán kính \(R = 2\).
Gọi \(J' = {V_{\left( {I;3} \right)}}\left( J \right) \Rightarrow \overrightarrow {IJ'} = 3\overrightarrow {IJ} \)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}x' - 2 = 3\left( {1 - 2} \right)\\y' + 2 = 3\left( {2 + 2} \right)\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x' = - 1\\y' = 10\end{array} \right. \Rightarrow J'\left( { - 1;10} \right)\end{array}\)
Đường tròn (C’) có tâm \(J'\left( { - 1;10} \right)\) bán kính \(R' = 3R = 3.2 = 6\)
Vậy \(\left( {C'} \right):{\left( {x + 1} \right)^2} + {\left( {y - 10} \right)^2} = 36.\)
Chọn A
Phép vị tự tâm \(O\) tỉ số \(k\) \(\left( {k \ne 0} \right)\) biến mỗi điểm \(M\) thành điểm \(M'\). Mệnh đề nào sau đây đúng?
\({V_{\left( {O;k} \right)}}\left( M \right) = M'\) \( \Leftrightarrow \overrightarrow {OM'} = k\overrightarrow {OM} \)
Chọn A
Nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 \) là:
Điều kiện: \(\sin x \ne 0 \Leftrightarrow x \pm k\pi \,\left( {k \in \mathbb{Z}} \right)\)
Ta có: \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}x}} = 3\cot x + \sqrt 3 \)
\(\begin{array}{l}
\Leftrightarrow \sqrt 3 \left( {1 + {{\cot }^2}x} \right) = 3\cot x + \sqrt 3 \\
\Leftrightarrow \sqrt 3 {\cot ^2}x - 3\cot x = 0\\
\Leftrightarrow \cot x\left( {\sqrt 3 \cot x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cot x = 0\\
\cot x = \sqrt 3
\end{array} \right.
\end{array}\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Nghiệm âm lớn nhất là \( - \dfrac{\pi }{2}\)
Chọn đáp án A.
Phương trình \(sin x + cos x – 1 = 2sin xcos x\) có bao nhiêu nghiệm trên \(\left[ {0;\,2\pi } \right]\) ?
Ta có: \(\sin x + \cos x - 1 = 2\sin x\cos x\)
\(\begin{array}{l}
\Leftrightarrow \sin x + \cos x = 1 + 2\sin x\cos x\\
\Leftrightarrow \sin x + \cos x = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x\\
\Leftrightarrow \sin x + \cos x = {\left( {\sin x + \cos x} \right)^2}
\end{array}\)
\( \Leftrightarrow \left( {\sin x + \cos x} \right)\left( {1 - \sin x - \cos x} \right) = 0\)
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\sin x + \cos x = 0\\
1 - \sin x - \cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = - \cos x\\
\sin x + \cos x = 1
\end{array} \right.
\end{array}\)
\( \Leftrightarrow \left[ \begin{array}{l}\tan x = - 1\\\sin \left( {x + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{4} + k\pi \\x = k2\pi \\x = \dfrac{\pi }{2} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)
Các nghiệm trên \(\left[ {0;2\pi } \right]\) là \(\left\{ {\dfrac{{3\pi }}{4};0;2\pi ;\dfrac{\pi }{2}} \right\}\)
Chọn đáp án C.
Phương trình \(\sin (x + {10^0}) = \dfrac{1}{2}\,\,({0^0} < x < {180^0})\) có nghiệm là:
Ta có: \(\sin (x + {10^0}) = \dfrac{1}{2}\) \( \Leftrightarrow \sin (x + {10^0}) = \sin {30^ \circ }\)
\( \Leftrightarrow \left[ \begin{array}{l}x + {10^ \circ } = {30^ \circ } + k{360^ \circ }\\x + {10^ \circ } = {150^ \circ } + k{360^ \circ }\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = {20^ \circ } + k{360^ \circ }\\x = {140^ \circ } + k{360^ \circ }\end{array} \right.\)
\({0^0} < x < {180^0}\) \( \Rightarrow {x_1} = {20^0},{x_2} = {140^0}\)
Chọn đáp án B.
Phương trình \(\sin (5x + \dfrac{\pi }{2}) = m - 2\) có nghiệm khi:
Phương trình có nghiệm khi và chỉ khi \( - 1 \le m - 2 \le 1 \Leftrightarrow m \in \left[ {1;3} \right]\)
Chọn đáp án A.
Phương trình nào sau đây tương đương với phương trình \(\cos x = 0\)?
Ta có: \(\cos x = 0 \Rightarrow x = \dfrac{\pi }{2} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
\(\cot x = 0 \Leftrightarrow \dfrac{{\cos x}}{{\sin x}} = 0 \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án D.
Phát biểu nào sau đây sai?
Phép vị tự tỉ số \(k\) biến đường tròn bán kính \(R\) thành đường tròn \(\left( {C'} \right)\) có bán kính \(R' = \left| k \right|.R\) nên C sai.
Chọn C
Cho đường thẳng \(d:3x + y + 3 = 0\). Viết phương trình của đường thẳng \(d'\) là ảnh của \(d\) qua phép dời hình có được bằng cách thược hiện liên tiếp phép quay tâm \(I\left( {1;2} \right)\), góc \( - {180^0}\) và phép tịnh tiến theo vec tơ \(\overrightarrow v = \left( { - 2;1} \right)\).
Phép quay tâm \(I\left( {1;2} \right)\), góc \( - {180^0}\) là phép đối xứng tâm \(I\left( {1;2} \right)\).
Dễ thấy \(I\left( {1;2} \right) \notin d\) nên qua phép đối xứng tâm, d biến thành \(d''//d\).
Qua phép tính tiến theo \(\overrightarrow v \) thì \(d''\) biến thành \(d'//d''\).
Do đó \(d'//d''//d\) nên trong các đáp án chỉ có A thỏa mãn.
Chọn A
Phát biểu nào sau đây là sai?
Phép dời hình biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm đó nên D sai.
Chọn D
Phương trình \(m\tan x - \sqrt 3 = 0\) Có nghiệm khi
Với m=0 thì \(\sqrt 3 = 0\) (vô nghiệm)
Với \(m\ne 0\) thì \(m\tan x - \sqrt 3 = 0 \) \(\Leftrightarrow \tan x = \dfrac{{\sqrt 3 }}{m}\) (luôn có nghiệm)
Phương trình có nghiệm khi \(m \ne 0\)
Chọn đáp án A.
Phương trình \(\sin x + m\cos x = \sqrt {10} \) có nghiệm khi:
Ta có: \(\sin x + m\cos x = \sqrt {10} \)
Phương trình có nghiệm khi: \(1 + {m^2} \ge 10 \Leftrightarrow {m^2} \ge 9\) \( \Leftrightarrow \left[ \begin{array}{l}m \le - 3\\m \ge 3\end{array} \right.\)
Chọn đáp án A.
Phương trình \({\rm{cos}}2x + \sin x = \sqrt 3 \left( {\cos x - \sin 2x} \right)\) có các nghiệm là:
Ta có: \({\rm{cos}}2x + \sin x = \sqrt 3 \left( {\cos x - \sin 2x} \right)\)
\(\begin{array}{l}
\Leftrightarrow \cos 2x + \sin x = \sqrt 3 \cos x - \sqrt 3 \sin 2x\\
\Leftrightarrow \cos 2x + \sqrt 3 \sin 2x = \sqrt 3 \cos x - \sin x\\
\Leftrightarrow \frac{1}{2}\cos 2x + \frac{{\sqrt 3 }}{2}\sin 2x = \frac{{\sqrt 3 }}{2}\cos x - \frac{1}{2}\sin x
\end{array}\)
\( \Leftrightarrow \cos \left( {2x - \dfrac{\pi }{3}} \right) = \cos \left( {x + \dfrac{\pi }{6}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x - \dfrac{\pi }{3} = x + \dfrac{\pi }{6} + k2\pi \\2x - \dfrac{\pi }{3} = - x - \dfrac{\pi }{6} + k2\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k2\pi \\x = \dfrac{\pi }{{18}} + k\dfrac{{2\pi }}{3}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án A.
Phương trình \(\sin 5x.\cos 3x = \sin 7x.\cos 5x\) có tập nghiệm là:
Ta có: \(\sin 5x.\cos 3x = \sin 7x.\cos 5x\)
\( \Leftrightarrow \dfrac{1}{2}\left( {\sin 8x + \sin 2x} \right) = \dfrac{1}{2}\left( {\sin 12x + \sin 2x} \right)\)
\( \Leftrightarrow \sin 8x = \sin 12x\)
\( \Leftrightarrow \left[ \begin{array}{l}12x = 8x + k2\pi \\12x = \pi - 8x + k2\pi \end{array} \right. \)
\( \Leftrightarrow \left[ \begin{array}{l}
4x = k2\pi \\
20x = \pi + k2\pi
\end{array} \right.\)
\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{k\pi }}{2}\\x = \dfrac{\pi }{{20}} + \dfrac{{k\pi }}{{10}}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án B.
Các giá trị của \(m \in \left[ {a;b} \right]\) để phương trình \(\cos 2x + {\sin ^2}x + 3\cos x - m = 5\) có nghiệm thì:
Ta có: \(\cos 2x + {\sin ^2}x + 3\cos x - m = 5\)
\( \Leftrightarrow 2{\cos ^2}x - 1 + 1 - {\cos ^2}x + 3\cos x - m = 5\)
\( \Leftrightarrow {\cos ^2}x + 3\cos x - m - 5 = 0\)
Đặt \(t = \cos x\) với \(t \in \left[ { - 1;1} \right]\) phương trình trở thành:
\(\begin{array}{l}{t^2} + 3t - m - 5 = 0\\ \Leftrightarrow {t^2} + 3t + \frac{9}{4} = m + \frac{{29}}{4}\\ \Leftrightarrow {\left( {t + \frac{3}{2}} \right)^2} = m + \frac{{29}}{4}\end{array}\)
\(\begin{array}{l} - 1 \le t \le 1\\ \Rightarrow \frac{1}{2} \le t + \frac{3}{2} \le \frac{5}{2}\\ \Rightarrow \frac{1}{4} \le {\left( {t + \frac{3}{2}} \right)^2} \le \frac{{25}}{4}\\ \Rightarrow \frac{1}{4} \le m + \frac{{29}}{4} \le \frac{{25}}{4}\\ \Leftrightarrow -7 \le m \le -1\\ \Rightarrow m \in \left[ {-7;-1} \right]\end{array}\)
Suy ra a=-7, b=-1 nên a+b=-8.
Chọn đáp án C.
Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {3;5} \right)\) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)
Đường tròn (C ) có tâm \(I\left( {3; - 2} \right)\) bán kính \(R = \sqrt {{3^2} + {{\left( { - 2} \right)}^2} - \left( { - 23} \right)} = 6\).
Gọi \(I' = {T_{\overrightarrow v }}\left( I \right)\) \( \Rightarrow \left\{ \begin{array}{l}x' = 3 + 3 = 6\\y' = - 2 + 5 = 3\end{array} \right.\) \( \Rightarrow I'\left( {6;3} \right)\)
\(I'' = {V_{\left( {O; - \frac{1}{3}} \right)}}\left( I \right)\) \( \Rightarrow \left\{ \begin{array}{l}x'' = - \frac{1}{3}.6 = - 2\\y'' = - \frac{1}{3}.3 = - 1\end{array} \right.\) \( \Rightarrow I''\left( { - 2; - 1} \right)\)
(C’) có tâm \(I''\left( { - 2; - 1} \right)\) bán kính \(R' = \left| { - \frac{1}{3}} \right|R = \frac{1}{3}.6 = 2\) nên có phương trình:
\(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 4.\)
Chọn A
Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là:
Phép đồng dạng chưa chắc biến đường thẳng thành đường thẳng song song hoặc trùng với nó nên loại B, C.
Phép dời hình thì có phép quay không biến đường thẳng thành đường thẳng song song hoặc trùng với nó nên loại D.
Chọn A
Chọn mệnh đề đúng:
Ta có: \(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án B.
Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:
Điều kiện: \(\left\{ \begin{array}{l}\cos 4x \ne 0\\\sin 2x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{8} + k\dfrac{\pi }{4}\\x \ne k\dfrac{\pi }{2}\end{array} \right.\)
Ta có: \(\tan 4x.\cot 2x = 1\)
\(\begin{array}{l}
\Leftrightarrow \tan 4x = \frac{1}{{\cot 2x}}\\
\Leftrightarrow \tan 4x = \tan 2x\\
\Leftrightarrow 4x = 2x + k\pi \\
\Leftrightarrow 2x = k\pi \\
\Leftrightarrow x = \frac{{k\pi }}{2}\left( {loai} \right)
\end{array}\)
Do đó phương trình vô nghiệm.
Chọn D
Nghiệm của phương trình \(\cos 3x = \cos x\) là:
Ta có: \(\cos 3x = \cos x \Leftrightarrow \left[ \begin{array}{l}3x = x + k2\pi \\3x = - x + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = k\dfrac{\pi }{2}\end{array} \right.\quad \Rightarrow x = k\dfrac{\pi }{2}\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án C.
Giải phương trình \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\).
Ta có: \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\) \( \Leftrightarrow 2x = {80^0} + k{180^0} \) \(\Leftrightarrow x = {40^0} + k{90^0}\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án B.
Trong mặt phẳng Oxy, cho điểm M (2;3). Hỏi trong bốn điểm sau, điểm nào là ảnh của M qua phép đối xứng trục Ox ?
ĐOx\((M) = M' \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = x}\\{y' = - y}\end{array}} \right. \)
\(\Rightarrow M'\left( {2; - 3} \right)\)
Chọn B.
Hình gồm 2 đường tròn có tâm và bán kính khác nhau có bao nhiêu trục đối xứng?
Một đường tròn có vô số trục đối xứng đi qua tâm của đường tròn đó.
Vậy trục đối xứng thỏa mãn yêu cầu của bài toán là đường thẳng nối hai tâm của đường tròn đã cho.
Chọn C
Trong mặt phẳng Oxy, cho parabol \((P)\) có phương trình \({x^2} = 4y\). Hỏi parabol nào trong các parabol sau là ảnh của \((P)\) qua phép đối xứng trục Ox ?
Gọi \((P') = \)Đ\(_{Ox}(P)\)
Lấy\(M\left( {x;y} \right) \in (P)\) tùy ý, ta có \({x^2} = 4y\)(1)
Gọi \(M'(x';y') = \)Đ\(_{Ox}(M)\) \( \Rightarrow M' \in (P')\)
Đ\(_{Ox}(M) = M' \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = x}\\{y' = - y}\end{array}} \right. \)
\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = x'}\\{y = - y'}\end{array}} \right.\)
Thay vào (1) ta được \({x'^2} = 4( - y').\)
Mà \(M' \in (P')\)
Do đó phương trình của \((P'):{x^2} = - 4y\)
Chọn B.
