Cho hàm số \(f\left( x \right) = \left| x \right|\sin x.\) Phát biểu nào sau đây là đúng về hàm số đã cho?
A. Hàm số đã cho có tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}.\)
B. Đồ thị hàm số đã cho có tâm đối xứng.
C. Đồ thị hàm số đã cho có trục đối xứng.
D. Hàm số có tập giá trị là \(\left[ { - 1;\,1} \right].\)
Lời giải của giáo viên
ToanVN.com
Hàm số \(y = \left| x \right|\sin x\) có:
\(\begin{array}{l}y\left( { - x} \right) = \left| { - x} \right|\sin \left( { - x} \right)\\ = - \left| x \right|\sin x = - y\left( x \right)\end{array}\)
Nên là hàm số lẻ.
Do đó đồ thị hàm số nhận gốc \(O\) làm tâm đối xứng.
Chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Phương trình \(sin x + cos x – 1 = 2sin xcos x\) có bao nhiêu nghiệm trên \(\left[ {0;\,2\pi } \right]\) ?
Phương trình \(\sin (5x + \dfrac{\pi }{2}) = m - 2\) có nghiệm khi:
Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:
Trong mặt phẳng tọa độ \(Oxy\), tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
Phương trình nào sau đây tương đương với phương trình \(\cos x = 0\)?
Trong mặt phẳng Oxy, cho parabol \((P)\) có phương trình \({x^2} = 4y\). Hỏi parabol nào trong các parabol sau là ảnh của \((P)\) qua phép đối xứng trục Ox ?
Nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 \) là:
Trong mặt phẳng Oxy, cho điểm M (2;3). Hỏi trong bốn điểm sau, điểm nào là ảnh của M qua phép đối xứng trục Ox ?
Hình gồm 2 đường tròn có tâm và bán kính khác nhau có bao nhiêu trục đối xứng?
Phương trình \(\sin (x + {10^0}) = \dfrac{1}{2}\,\,({0^0} < x < {180^0})\) có nghiệm là:
Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {3;5} \right)\) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)
