Trong mặt phẳng tọa độ \(Oxy\), tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
A. \(\Delta ':x + 2y - 3 = 0\).
B. \(\Delta ':x + 2y = 0\).
C. \(\Delta ':x + 2y + 1 = 0\).
D. \(\Delta ':x + 2y + 2 = 0\).
Lời giải của giáo viên
ToanVN.com
Lấy \(M\left( {x;y} \right)\) bất kì thuộc \(\Delta \).
\(M' = {T_{\overrightarrow v }}\left( M \right) \Rightarrow \left\{ \begin{array}{l}x' = x + 1\\y' = y - 1\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}x = x' - 1\\y = y' + 1\end{array} \right.\)
Thay \(\left\{ \begin{array}{l}x = x' - 1\\y = y' + 1\end{array} \right.\) vào phương trình \(\Delta \) ta được:
\(\begin{array}{l}\left( {x' - 1} \right) + 2\left( {y' + 1} \right) - 1 = 0\\ \Leftrightarrow x' + 2y' = 0\\ \Rightarrow M' \in \Delta ':x + 2y = 0\end{array}\)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Phương trình \(sin x + cos x – 1 = 2sin xcos x\) có bao nhiêu nghiệm trên \(\left[ {0;\,2\pi } \right]\) ?
Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:
Phương trình \(\sin (5x + \dfrac{\pi }{2}) = m - 2\) có nghiệm khi:
Phương trình nào sau đây tương đương với phương trình \(\cos x = 0\)?
Trong mặt phẳng Oxy, cho parabol \((P)\) có phương trình \({x^2} = 4y\). Hỏi parabol nào trong các parabol sau là ảnh của \((P)\) qua phép đối xứng trục Ox ?
Nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 \) là:
Hình gồm 2 đường tròn có tâm và bán kính khác nhau có bao nhiêu trục đối xứng?
Trong mặt phẳng Oxy, cho điểm M (2;3). Hỏi trong bốn điểm sau, điểm nào là ảnh của M qua phép đối xứng trục Ox ?
Phép vị tự tâm \(O\) tỉ số \(k\) \(\left( {k \ne 0} \right)\) biến mỗi điểm \(M\) thành điểm \(M'\). Mệnh đề nào sau đây đúng?
Phương trình \(\sin (x + {10^0}) = \dfrac{1}{2}\,\,({0^0} < x < {180^0})\) có nghiệm là:
Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {3;5} \right)\) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)
