Lời giải của giáo viên
ToanVN.com
Gọi \((P') = \)Đ\(_{Ox}(P)\)
Lấy\(M\left( {x;y} \right) \in (P)\) tùy ý, ta có \({x^2} = 4y\)(1)
Gọi \(M'(x';y') = \)Đ\(_{Ox}(M)\) \( \Rightarrow M' \in (P')\)
Đ\(_{Ox}(M) = M' \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = x}\\{y' = - y}\end{array}} \right. \)
\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = x'}\\{y = - y'}\end{array}} \right.\)
Thay vào (1) ta được \({x'^2} = 4( - y').\)
Mà \(M' \in (P')\)
Do đó phương trình của \((P'):{x^2} = - 4y\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Phương trình \(sin x + cos x – 1 = 2sin xcos x\) có bao nhiêu nghiệm trên \(\left[ {0;\,2\pi } \right]\) ?
Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là:
Phương trình \(\sin (5x + \dfrac{\pi }{2}) = m - 2\) có nghiệm khi:
Trong mặt phẳng tọa độ \(Oxy\), tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
Phương trình nào sau đây tương đương với phương trình \(\cos x = 0\)?
Nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 \) là:
Hình gồm 2 đường tròn có tâm và bán kính khác nhau có bao nhiêu trục đối xứng?
Trong mặt phẳng Oxy, cho điểm M (2;3). Hỏi trong bốn điểm sau, điểm nào là ảnh của M qua phép đối xứng trục Ox ?
Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {3;5} \right)\) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)
Phương trình \(\sin (x + {10^0}) = \dfrac{1}{2}\,\,({0^0} < x < {180^0})\) có nghiệm là:
Trong mặt phẳng với hệ tọa độ Oxy , cho điểm \(A(1;2)\) và một góc \(\alpha = {90^0}\). Tìm trong các điểm sau điểm nào là ảnh của A qua qua phép quay tâm O góc quay \(\alpha = {90^0}\)
